• Title/Summary/Keyword: Cause of fire

Search Result 819, Processing Time 0.03 seconds

Evaluation of Building Envelope Performance of a Dry Exterior Insulation System Using Truss Insulation Frame (트러스 단열 프레임을 이용한 건식 외단열 시스템의 외피 종합 성능 평가)

  • Song, Jin-Hee;Lee, Dong-Yun;Shin, Dong-Il;Jun, Hyun-Do;Park, Cheol-Yong;Kim, Sang-Kyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.153-164
    • /
    • 2019
  • The presence of thermal bridges in a building envelope cause additional heat loss which increases the heating energy. Given that a higher building insulation performance is required in these cases, the heat loss via thermal bridges is a high proportion of the total heat energy consumption of a building. For the dry exterior insulation system that uses mullions and transoms to fix insulation and exterior materials such as stone and metal sheet, the occurrence of thermal bridges at mullions and transoms is one of the main reasons for heat loss. In this study, a dry exterior insulation system using the truss insulation frame (TIF) was proposed as an alternative to metal mullions. To evaluate the building envelope performance, structural, air-leakage, water-leakage, fire-resistance, thermal, and condensation risk tests were conducted. In addition, the annual energy consumption associated with heating and cooling was calculated, including the linear thermal transmittance of the thermal bridges. As a result, the dry exterior insulation system using TIF achieved the allowable value for all tests. It was also determined that the annual heating load of a building was reduced by 36.7 % when the TIF dry exterior insulation system was used, relative to the dry exterior insulation system using steel pipes without additional insulations.

The Impact Analysis of the Leakage Scenario in the Tank of Hydrogen Fuel Cell Vessel (수소연료전지선박의 탱크 내 누출시나리오에 따른 영향분석)

  • Sang-Jin Lim ․;Yoon-Ho Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • As an alternative to environmental pollution generated from fossil fuels currently in use, research is being actively conducted to use hydrogen that does not cause air pollution. As fire and explosion accidents caused by hydrogen leakage have occurred until recently, research on safety is needed to commercialize hydrogen on ships, which are special environments. In this study, a seasonal alternative scenario for each season and the worst scenario were assumed in the event of a leakage accident while a hydrogen fuel cell propulsion ship equipped with a hydrogen storage tank was navigating at JangSaengPo port in Ulsan. In order to consider environmental variables, the damage impact range was derived through ALOHA and probit analysis based on the annual average weather data for 2021 by the Korea Meteorological Administration and on geographic information data from the National Statistical Office. Radiation showed a wider damage range than that of Overpressure and Flame in both the alternative and worst-case scenarios, and as a result of probit analysis, a fatality rate of 99% was confirmed in all areas.

A Study on the Comparative Analysis and Utilization of Evacuation Time according to Variation of Modelling of Behavior Modes: Focusing on the Case of Underground Parking Lot (행동모드 변화 모델링에 따른 피난시간 비교분석과 활용방안 연구: 지하 주차장 사례를 중심으로)

  • Gi-gyeong Koo
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.284-292
    • /
    • 2024
  • Purpose: Compared to general fires of the same size, underground parking lot fires are more likely to cause human and property damage and are not easy for firefighters to extinguish fire and save lives. This study attempted to find out how to secure the evacuation safety of parking lot users based on changes in the evacuation simulation behavior mode applied to evaluate the evacuation safety of the object. Method: Simulation for each CASE was performed using the Pathfinder program. Result: it was found that the higher the reference value, the higher the evacuation time, and Behavior showed an increase in time in SFPE mode rather than Steering mode. Priority was able to confirm an increase in time in priority designation rather than non-priority designation. Conclusion: The Required Safe Egress Time (RSET) for evaluating the evacuation safety of underground parking lots and the building evacuation design to ensure evacuation safety should be evaluated and reflected separately from Simulation's Behaviour Mode and Priority.

The Research on the Development of Passenger Helmet to Prevent Head Trauma (두부 손상 보호를 위한 승객용 헬멧 개발 연구)

  • Lim, Jeong-Ku;Kweon, Ghi-Sun;Dodge, Robin E.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • Introduction : Head trauma is the main cause of death in aircraft crash. In a Michigan study of structurally survivable, fatal accidents, 80% of the fatally injured had received head trauma. We tried to develop a new helmet for passengers, and perform its efficiency test. Methods : An aircraft helmet requires an excellent protection against head trauma, lightness, and small volumes. In addition, it must be wearable, fire resistant, and non toxic when it is burning. We developed two new helmets made from silicone foam which met all theses requirements. One was thin (2.5cm), and the other was thick (6.3cm). These looked like a motorcycle helmet and had only a soft silicone as liner material without an outer hard shell. Therefore we can carry them easily inside aircrafts. The standard test for helmet is Snell's drop test. It measures the impact acceleration of head shaped metal wearing helmet during we drop it at certain heights. Impact sites were total 5 sites (front, back, right, left and top) for each helmet. All these sites were impacted twice. Results : The thickness of impact sites varied from 2.5cm to 6.3cm. The impact acceleration of 2.5cm thickness site when it was dropped from 1.0 meter was 379g. But, that of 6.3cm thickness site when it was dropped from 1.5 meter was only 163g. Unfortunately, both helmets didn't meet the Snell Standard for motorcycle helmets. Discussion : If we add suitable outer hard shell, and change its thickness and design, the efficiency will be increased. A study indicated that helmet could reduce the risk of head trauma up to 85%. We made helmet for passengers in aircraft crash for the first time. If we improve its weak points, it will decrease the frequency of head trauma in aircraft craft.

Hazard Evaluation of Runaway Reaction in Deboronation Process Using H2O2 in DIET Synthesis of Pharmaceutical Raw Material (의약품 원료 DIET 합성 중 H2O2를 이용한 붕소제거 반응공정에서의 폭주반응 위험성 평가)

  • Kim, Won Sung;Lee, Keun Won
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.49-54
    • /
    • 2018
  • In the Active Pharmaceutical Ingredient(API) manufacturing company, since the product is produced by the chemical reaction, fire and explosion are frequently occurred in the process of inputting the raw powder as the chemical reaction stage. There are not many studies on safety measures through analysis of cause of accident in the actual chemical reaction stage. In this study, we investigated the heat flow in the boron removal reaction process to investigate the risk in the chemical reaction stage. The study reaction process was performed by using the reaction calorimeter for the products synthesized at the actual raw material in pharmaceutical factory. The risk was estimated by comparing the maximum temperature of the synthesis reaction, which can generate heat due to the failure of cooling in the actual manufacturing process, and the technical temperature. These results are applied to commercial manufacturing sites and safety measures to control the risk of runaway reaction due to reaction heat are suggested.

The implementation of liquefaction equipment monitoring system based on Android (안드로이드 기반의 유증기 액화장치 모니터링 시스템 구현)

  • Park, Man-Kyu;Tack, Han-Ho;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.583-589
    • /
    • 2016
  • Volatile organic compounds(VOCs) are regarded as a harmful cause substance not only causing air pollutions but also causing global warming phenomenon. For this reason, VOCs are managed politically to reduce emissions by each country. In particular, the vapor from the gas station contains VOCs which is harmful to the human body such as carcinogens benzene and pollute the atmosphere, the Ministry of Environment defined every gas station must install vapor recovery equipment to recover volatile organic compounds. Recently, there are many accidents caused by existing vapor treatment methods, the liquefaction recovery technology is getting the spotlight to cool the vapor at the field. However, because the liquefaction recovery technology have risks of fire or explosion in accordance with temperature, the real time monitoring is critical factor. In this paper, we implement an Android-based monitoring application for liquified vapor recovery device which attached sensor module for temperature and power to monitoring real time information.

A Stress Analysis for Pressure Vessel to Prevent Spontaneous Ignition of Coal Stockpile (저탄장 자연발화 방지를 위한 압력용기의 응력 해석)

  • Kim, Young In;Kim, Seung Hun;Jie, Min-Seok;Yeum, Chan Sub;Choi, Won Hyuck
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.205-212
    • /
    • 2018
  • Spontaneous ignition is not only severe economic damage but also a typical plant damage caused by harmful gases generated during the fire. Because coal is porous, it causes oxygen to be absorbed in the amount of oxygen per unit weight of oxygen, resulting in low humidity and low thermal conductivity. The cause and effect of spontaneous ignition are very complex, so it is difficult to prevent it beforehand and once it is difficult to digest it, it is difficult to digest it. This study examines structural safety by conducting a structural analysis of the cooling ball system to prevent spontaneous combustion of coal stockpile plants and external pressures.

An Approach to Risk Assessment of City Gas Pipeline (도시가스 배관의 위험평가 방법론 제시)

  • Park Kyo-Shik;Lee Jin-Han;Jo Young-Do;Park Jin-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.33-40
    • /
    • 2003
  • In this work, a novel approach was introduced to assess cost of loss resulting from risk as well as to help deciding inspection period through quantifying risk. In order to quantifying risk of city gas pipeline, frequency and consequence analysis were required. The main causes of city gas accident were analyzed to be digging, external corrosion, ground movement, and equipment failure. Tools to evaluate frequency of each cause was also suggested. Among city gas accidents, fire damage is the dominant one and mainly discussed; fatality, burning injury, and damage to building were estimated using the consequence model suggested. By combining frequency and consequence analysis, evaluating cost of risk management together with calculating example. This work could be applicable for city gas companies to plan how to manage risk most effectively.

  • PDF

Hazards of decomposition and explosion for Tert-butylperoxymaleate (터셔리부틸퍼옥시말레이트의 분해 및 폭발 위험성)

  • Lee, Jung-Suk;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, hazards of decomposition and explosion for tert-butylperoxymaleate(TBPM), an organic peroxide, were evaluated by using various equipment to determine the cause of a fire explosion accident. As a result of DSC analysis, the instantaneous power density of TBPM was 26,401 kW/ml, and the NFPA reactive index(Nr) was classified as 4. And the positive value of EP(explosive propagation) and SS(shock sensitivity) showed that the TBPM had a potential hazard of explosion. From the experimental results, the shock sensitivity and friction sensitivity was rated as class 4 and 5, respectively. In the pressure vessel test, TBPM was ranked USA-PVT No.4 and evaluated as a self-reactive substance. In the combustion rate test, TBPM had the combustion rate of 167 mm/sec and was evaluated as the flammable solid classification 2 in GHS.

A Study on the Verification of Crashworthiness for Fuel System of Military Rotorcraft (군용 회전익항공기 연료계통 내추락성 입증에 관한 연구)

  • Sangsoo Park;Junmo Yang;Munguk Kim;Jaechul Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-23
    • /
    • 2023
  • The aircraft fuel system performs a number of functions such as supplying fuel, transferring fuel between fuel tanks, and measuring the amount of residual fuel in each fuel tank. Since it is a direct cause of fire hazard in crash incident, it is a must to improve survivability of crew members by designing the airframe to tolerate expected crash impact. The civil aviation authority requires intensive verification of the fuel system design to determine precise application of the airworthiness requirement. Research activity on airworthiness certification criteria and verification scheme is still insufficient, although it has a significant importance. In this paper, as part of a study to improve flight safety by developing guidelines for demonstrating fuel system crash resistance, analysis results of fuel system crash-related airworthiness certification standards, verification scheme, and cases study applicable to military rotorcraft have been reviewed.