• Title/Summary/Keyword: Cause of failure

Search Result 2,140, Processing Time 0.035 seconds

Development of Long-Term Electricity Demand Forecasting Model using Sliding Period Learning and Characteristics of Major Districts (주요 지역별 특성과 이동 기간 학습 기법을 활용한 장기 전력수요 예측 모형 개발)

  • Gong, InTaek;Jeong, Dabeen;Bak, Sang-A;Song, Sanghwa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2019
  • For power energy, optimal generation and distribution plans based on accurate demand forecasts are necessary because it is not recoverable after they have been delivered to users through power generation and transmission processes. Failure to predict power demand can cause various social and economic problems, such as a massive power outage in September 2011. In previous studies on forecasting power demand, ARIMA, neural network models, and other methods were developed. However, limitations such as the use of the national average ambient air temperature and the application of uniform criteria to distinguish seasonality are causing distortion of data or performance degradation of the predictive model. In order to improve the performance of the power demand prediction model, we divided Korea into five major regions, and the power demand prediction model of the linear regression model and the neural network model were developed, reflecting seasonal characteristics through regional characteristics and migration period learning techniques. With the proposed approach, it seems possible to forecast the future demand in short term as well as in long term. Also, it is possible to consider various events and exceptional cases during a certain period.

  • PDF

The Study on Control Algorithm of Elevator EDLC Emergency Power Converter (승강기 EDLC 비상전원 전력변환장치 제어 알고리즘 연구)

  • Lee, Sang-min;Kim, IL-Song;Kim, Nam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.709-718
    • /
    • 2017
  • The installation of the elevator ARD(Automatic Rescue Device) system has been forced into law in these days in order to safely rescue passengers during power failure. The configuration of the ARD system consists of energy storage device, power converter and control systems. The EDLC(Electric Double Layer Capacitor) are used as energy storage device for rapid charge/discharge purposes. The power conditioning system (PCS) consists of bi-directional converter, 3-phase converter and control system. The dead-beat control system is adopted for most systems however it requires complex mathematical calculations, the high performance microprocessors are mandatory and thus it can be a cause of high manufacturing cost. In this paper the new control method for average current mode control is presented for simple structure. The control algorithm is applied to the single phase system and then expands to three phase system to meet the sysem requirements. The mathematical modeling using average modeling method is presented and analysed by PSIM computer simulation to verifie the validity of the proposed control methods.

Reoperations on Heart Valve Prostheses (인공심장판막에 대한 재치환술)

  • 김재현;최세영;유영선;이광숙;윤경찬;박창권
    • Journal of Chest Surgery
    • /
    • v.31 no.12
    • /
    • pp.1165-1171
    • /
    • 1998
  • Background: All currently available mechanical and bioprosthetic valves are associated with various types of deterioration leading to dysfunction and/or valvular complications. Reoperation on prosthetic heart valves is increasingly under consideration for both clinical and prophylactic indications. This review was conducted to determine the factors affecting the risk of reoperation for prosthetic valve replacement. Material and method: From January 1985 to July 1996, 124 patients underwent reoperation on prosthetic heart valves, and 3 patients had a second valve reoperation. The causes of reoperation were prosthetic valve failure(96 cases, 77.4%), prosthetic valve thrombosis(16 cases, 12.9%), prosthetic valve endocarditis(7 cases, 5.6%) and paravalvular leak(5 cases, 4.1%). This article is based on the analysis of the experience with particular emphasis on the preoperative risks affecting the outcome of the reoperation. Result: Overall hospital mortality rate was 8.9%(11/124). Low cardiac output was the most common cause of death(70.6%). Left ventricular systolic dimension(p=0.001), New York Heart Association functional class IV(p=0.003) and serum creatinine level(p=0.007) were the independent risk factors, but age, sex and cardiothoracic ratio did not have any influence on the operative mortality. Follow-up period was ranged from 3 to 141 months (mean, 50.6 months). A late mortality rate was 1.8%. Conclusion: The surgical risk of reoperation on heart valve prostheses in the advanced NYHA class patients is higher, therefore reoperation is recommended before the hemodynamic impairment become severe.

  • PDF

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network (산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.256-264
    • /
    • 2020
  • Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.

An Efficient and Secure Handover Mechanism for MVPN Services (MVPN 서비스 제공을 위한 효율적이고 안전한 핸드오버 메커니즘)

  • Woo, Hyun-Je;Kim, Kyoung-Min;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.1
    • /
    • pp.62-72
    • /
    • 2007
  • Mobile Virtual Private Network (MVPN) provides VPN services without geographical restriction to mobile workers using mobile devices. Coexistence of Mobile IP (MIP) protocol for mobility and IPsec-based VPN technology are necessary in order to provide continuous VPN service to mobile users. However, Problems like registration failure or frequent IPsec tunnel re-negotiation occur when IPsec-based VPN Gateway (GW) and MIP are used together. In order to solve these problems, IETF proposes a mechanism which uses external home agent (x-HA) located external to the corporate VPN GW. In addition, based on the IETF proposal, a mechanism that assigns x-HA dynamically in the networks where MN is currently located was also proposed with the purpose to reduce handover latency as well as end-to-end delay. However, this mechanism has problems such as exposure of a session key for dynamic Mobility Security Association (MSA) or a long latency in case of the handover between different networks. In this paper, we propose a new MVPN protocol in order to minimize handover latency, enhance the security in key exchange, and to reduce data losses cause by handover. Through a course of simulation, the performance of proposed protocol is compared with the existing mechanism.

Development of a Mountainous Area Monitoring System based on IoT Technology (IoT 기술 기반의 산악지 모니터링 시스템 개발)

  • Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.437-446
    • /
    • 2017
  • 70 percent of Korea's territory is covered with mountains, whose difficult conditions can cause damage to facilities. Recently, the demand for facilities related to outdoor activities including monorails has been on the rise, and such facilities are much more likely to become damaged. For this reason, a monitoring system applying IoT to mountainous areas was developed and its applicability is evaluated in this study. The current status of the existing mountainous facilities and monitoring systems were reviewed, and the current wired monitoring technology was analyzed. A scenario for IoT-based monitoring was developed, and then sensor nodes were developed, which include an RF-communication module and interface, power-supply and solar-cell. A testbed was set up at K University. The same data was collected by the wireless system as had been collected by the wired one. The study findings are as follows. Firstly, by using the wireless system, it is estimated that the construction duration can be reduced by about 25 percent, while the construction costs can be reduced by about 3~52 percent. Secondly, the safety of the construction workers can be improved by making the working conditions less dangerous, such as by eliminating the need to transport cables.

Fault Injection Based Indirect Interaction Testing Approach for Embedded System (임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법)

  • Hossain, Muhammad Iqbal;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.419-428
    • /
    • 2017
  • In an embedded system, modules exchange data by interacting among themselves. Exchanging erroneous resource data among modules may lead to execution errors. The interacting resources produce dependencies between the two modules where any change of the resources by one module affects the functionality of another module. Several investigations of the embedded systems show that interaction faults between the modules are one of the major cause of critical software failure. Therefore, interaction testing is an essential phase for reducing the interaction faults and minimizing the risk. The direct and indirect interactions between the modules generate interaction faults. The direct interaction is the explicit call relation between the modules, and the indirect interaction is the remaining relation that is made underneath the interface that possesses data dependence relationship with resources. In this paper, we investigate the errors that are based on the indirect interaction between modules and introduce a new test criterion for identifying the errors that are undetectable by existing approaches at the integration level. We propose a novel approach for generating the interaction model using the indirect interaction pattern and design test criteria that are based on different interaction errors to generate test cases. Finally, we use the fault injection technique to evaluate the feasibility and effectiveness of our approach.

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.

Analysis of Recurred Mitral Regurgitation after Mitral Repair according to Procedure or Valve Related Causes (승모판막 성형술 후 재발의 원인에 대해 술기와 판막 요인에 대한 분석)

  • Shin Hong Ju;Yoo Dong Gon;Lee Yong Jik;Park Soon Ik;Choo Suk Jung;Song Hyun;Chung Cheol Hyun;Song Meong Gun;Lee Jae Won
    • Journal of Chest Surgery
    • /
    • v.38 no.2 s.247
    • /
    • pp.132-138
    • /
    • 2005
  • Background: Mitral valve repair (MVP) is the optimal procedure for mitral regurgitation (MR), however, failure and subsequent reoperations are the limitations. The current study assessed the procedure in relation to the primary valve related causes of recurrent MR. Material and Method: MR was treated in 493 patients undergoing MVP from January of 1994 to January of 2002. The causes of MR were degenerative $(n=252,\;51.5\%),$ rheumatic $(n=156,\; 31.6\%),$ and others $(n=85,\; 16.9\%).$ Surgery comprised 446 ring annuloplasties $(90.5\%),$ 227 new chordae formations $(46\%),$ 125 quadriangular resections $(25.3\%),$ 28 chordae transfers $(5.7\%),$ and 8 Alfieri's stitches $(1.6\%).$ The mean follow up was $29.04\pm22.81$ months. Result: There were 5 early $(1.01\%)$, and 5 late deaths $(1.01\%).$ The reoperation rate was $1.42\%$. There were 45 $(9.1\%)$ recurrent MR (grade III or IV). Of these, 24 were procedure related including incomplete repair (n=14), discordant new chordae length (n=8) and others (n=2). In 21 patients, the cause was valve related including rheumatic disease progression (n=10), recurrent chordae elongation or prolapse (n=5) and others (n=6). Severe MR was higher after incomplete repair (p < 0.001), and valve related failure strongly correlated with rheumatic progression (p < 0.05). Conclusion: Since completeness of operation is the prime risk factor that determine the repair durability, intra-operative assessment of the initial repair with trans-esophageal echocardiography is essential.

Outcome and risk factors of pediatric hemato-oncology patients admitted in pediatric intensive care unit (소아 중환자실에 입실한 소아 종양/혈액 질환 환자의 예후 및 위험인자)

  • Kim, Bo Eun;Ha, Eun Ju;Bae, Keun Wook;Kim, Seon Guk;Im, Ho Joon;Seo, Jong Jin;Park, Seong Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.10
    • /
    • pp.1153-1160
    • /
    • 2009
  • Purpose:To evaluate the risk factors for mortality and prognostic factors in pediatric hemato-oncology patients admitted to the pediatric intensive care unit (PICU). Methods:We retrospectively reviewed the medical records of pediatric hemato-oncology patients admitted at the PICU of the Asan Medical Center between September 2005 and July 2008. Patients admitted at the PICU for perioperative or terminal care were excluded. Results:Total 88 patients were analyzed. Overall ICU mortality rate was 34.1%. Mean age at PICU admission was $7.0{\pm}5.7$ years and mean duration of PICU stay was $18.1{\pm}22.2$ days. Hematologic diseases contributed to 77.3% of all the primary diagnoses, and the primary cause of admission was respiratory failure (39.8%). The factors related to increased mortality were C-reactive protein level (P<0.01), ventilation or dialysis requirement (P<0.01), and hematopoietic stem cell transplantation (P<0.05). In all, 3 scoring systems were investigated [Number of Organ System Failures (OSF number), the Pediatric Risk of Mortality III (PRISM III) score, and the Sequential Organ Failure Assessment (SOFA) score]; higher score correlated with worse outcome (P<0.01). The Oncological Pediatric Risk of Mortality (O-PRISM) scores of the 21 patients who had received hematopoietic stem cell transplantation were higher among the non-survivors, but not statistically significant (P=0.203). Conclusion:The PRISM III and SOFA scores obtained within 24 hours of PICU admission were found to be useful as early mortality predictors. The highest OSF number during the PICU stay was closely related to poor outcome.