• Title/Summary/Keyword: Cause Conditions

Search Result 2,515, Processing Time 0.033 seconds

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions

  • Kabir, Muhammad Ikramul;Samali, Bijan;Shrestha, Rijun
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.69-84
    • /
    • 2017
  • This paper presents results of an experimental investigation on the behaviour of bond between external glass fibre reinforced polymer reinforcement and concrete exposed to three different environmental conditions, namely, temperature cycles, wet-dry cycles and outdoor environment separately for extended durations. Single shear tests (pull-out test) were conducted to investigate bond strengths (pull-out strengths) of control (unexposed) and exposed specimens. Effect of the exposure conditions on the compressive strength of concrete were also investigated separately to understand the effect of changing concrete compressive strength on the pull-out strength. Based on the comparison of experimental results of exposed specimens to control specimens in terms of bond strengths, failure modes and strain profiles, the most significant degradation of pull-out strength was observed in specimens exposed to outdoor environment, whereas temperature cycles did not cause any deterioration of strength.

A Characteristics of Heat Affected Zones of the Damaged Rod Type Cast Steel Coupler According to Repair Weldment Conditions (손상된 Rod Type Coupler 주강재의 보수용접에 따른 열영향부특성)

  • Hyun Chang-Yong;Park Soo-Choong
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.344-349
    • /
    • 2005
  • Cast steels have been mainly in rod type couplers which connect railway vehicles. These components, as important members, are exposed to repeat to repeated stresses and impact loading during stop and departure service for a long tie. The coupler suffers fatigue crack initiations and demage that cause need to repair weldment due to these loading conditions. Therefore, the heat affected zone of cast steel couple in rod type were evaluated in view of metallurgical weld characteristics after repair welding at laboratory. The specimens with two different welding techniques were evaluated after several welding conditions and post-heat treatments. Micro-vickers hardness and tensile tests and microstructural observations were conducted on heat affected zone of the weldment according to repair weld and post-heat treatment.

  • PDF

Mathematical Modelling and Simulation of CO2 Removal from Natural Gas Using Hollow Fibre Membrane Modules

  • Gu, Boram
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • Gas separation via hollow fibre membrane modules (HFMM) is deemed to be a promising technology for natural gas sweetening, particularly for lowering the level of carbon dioxide (CO2) in natural gas, which can cause various problems during transportation and process operation. Separation performance via HFMM is affected by membrane properties, module specifications and operating conditions. In this study, a mathematical model for HFMM is developed, which can be used to assess the effects of the aforementioned variables on separation performance. Appropriate boundary conditions are imposed to resolve steady-state values of permeate variables and incorporated in the model equations via an iterative numerical procedure. The developed model is proven to be reliable via model validation against experimental data in the literature. Also, the model is capable of capturing axial variations of process variables as well as predicting key performance indicators. It can be extended to simulate a large-scale plant and identify an optimal process design and operating conditions for improved separation efficiency and reduced cost.

Stability Design of a Coolant Heater based on Fastening Conditions (냉각수 가열장치의 체결 조건에 따른 안정화 설계)

  • Han, Dae-Seong;Yoon, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • The vehicle industry requires superior technology that can increase the efficiency of the battery of an electric vehicle. A coolant heater that can optimize the temperature of the battery is one of the most effective techniques for cold environments. However, the vibrations generated by this device can cause major complications, such as leakage and system errors. Therefore, the vibrations of the device must be suppressed to improve the stability. In this study, the fastening conditions of a coolant heater were analyzed using a computer simulation to investigate the natural frequencies and mode shapes which reflect the primary reasons for the largest vibrations under the given operating conditions. The results showed that six-bolted joints could considerably improve the stability of the fastening device

Prediction of Depth of Concrete Carbonation According to Microenvironmental Conditions (미세 환경조건에 따른 콘크리트 탄산화 깊이 예측)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.158-159
    • /
    • 2021
  • When the porous concrete is exposed to the external environment, the internal relative humidity changes from time to time due to the inflow and outflow of moisture. This change in moisture is affected by temperature. The temperature and humidity of concrete is dominant in the carbonation rate, the largest cause of deterioration of concrete. In this study, actual weather data were used as boundary conditions. A carbonization model of concrete temperature and humidity and calcium hydroxide was constructed to perform long-term analysis. There is a slight error in the carbonation formula of the Japanese Academy of Architecture applying the Kishtani coefficient, a representative experimental formula related to carbonization, and the analysis result values. However, considering that it behaves very similarly, it is thought that a fairly reliable numerical analysis model has been established. A slight error is believed to be due to the fact that the amount of residual calcium hydroxide in the carbonated site has not yet been clearly identified.

  • PDF

Assessment of Improving SWAT Weather Input Data using Basic Spatial Interpolation Method

  • Felix, Micah Lourdes;Choi, Mikyoung;Zhang, Ning;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.368-368
    • /
    • 2022
  • The Soil and Water Assessment Tool (SWAT) has been widely used to simulate the long-term hydrological conditions of a catchment. Two output variables, outflow and sediment yield have been widely investigated in the field of water resources management, especially in determining the conditions of ungauged subbasins. The presence of missing data in weather input data can cause poor representation of the climate conditions in a catchment especially for large or mountainous catchments. Therefore, in this study, a custom module was developed and evaluated to determine the efficiency of utilizing basic spatial interpolation methods in the estimation of weather input data. The module has been written in Python language and can be considered as a pre-processing module prior to using the SWAT model. The results of this study suggests that the utilization of the proposed pre-processing module can improve the simulation results for both outflow and sediment yield in a catchment, even in the presence of missing data.

  • PDF

The Effects of HVAC Management on Condensation Cause and Prevention in Indoor Swimming Pools (실내수영장 공조관리 요인이 시설물 결로원인과 예방에 미치는 영향)

  • Sung, Ha-Dong
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.2
    • /
    • pp.9-20
    • /
    • 2018
  • This study is empirically intended to look into the effects of HVAC management on condensation cause and prevention in indoor swimming pools. The findings are summarized as follows. First, the experience of condensation in indoor swimming pools showed that 132 out of 142 people in total experienced the condensation in indoor swimming pools, which they had a high experience rate of 92.3%. For the location of condensation, the wall joints were 46.8% and the windows were 34.5%, which a total of 72.3% occurred in the wall joints and windows. Second, the effect of construction design, HVAC management and building construction on the cause of condensation in indoor swimming pools showed that building construction had an effect on the cause and location of condensation depending on the seasonal time, partially adopting hypothesis 1. Third, the effect of condensation-causing factors on condensation-preventing factors in indoor swimming pools showed that condensation had a close relationship with air and temperature conditions depending on the time and location of condensation, adopting hypothesis 2. As for the above-stated findings, the HVAC management in indoor swimming pools is an important concern factor that continues to cause condensation despite the development of advanced construction materials. Especially, building construction is a main factor that has a direct effect on condensation in the HVAC management of facilities. This implies that the window management is important in maintaining the wall joints - which can suppress the selective use and defect occurrence of construction materials - or confined spaces for a long time.

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

A Study on the Improvement of the Separation Phenomenon of Coolant Hose in the Tracked Combat Vehicle (전투차량 냉각수 호스 분리현상 개선에 관한 연구)

  • Kang, Tae-Woo;Shin, Hun-Yong;Ryu, Jeong-Min;Park, Kyung-Chul;Kim, Jae-Kyu;Lee, Hun-kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • In general, tracked combat vehicles require excellent output performance of a power unit system to drive on special terrains and in extreme environmental conditions. However, high temperature and pressure are readily applied to the coolant hose in the power unit of the vehicles during high-speed driving under extreme road and weather conditions. These driving conditions can cause the separation phenomenon of the coolant hose in the power unit and consequentially engine overheating during driving. Therefore, a newly designed decompression device for the coolant hose has been proposed and manufactured to solve these problems in the present study. To validate of the newly proposed decompression device, the input and output pressures were measured under the before- and after-improvement conditions using experimental methods for different engine RPMs. In addition, the pre-heater temperature was measured under both conditions. From the experimental results, we expect that the current investigation can help to improve the driving performance of tracked combat vehicles.

Mithramycin Inhibits Etoposide Resistance in Glucose-deprived HT-29 Human Colon Carcinoma Cells

  • Lee, Eun-Mi;Park, Hae-Ryong;Hwang, Ji-Hwan;Park, Dong-Jin;Chang, Kyu-Seob;Kim, Chang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1856-1861
    • /
    • 2007
  • Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase $II{\alpha}$, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.