이 연구는 사회과학 연구에서 인공지능과 인과추론의 통합, 특히 인과적 딥러닝에 초점을 맞추고, Pearl의 구조적 인과모델, Rubin의 잠재적 결과 프레임워크, Schölkopf의 인과적 표현 학습 등 주요 이론들을 검토하였다. 또한 딥러닝을 활용한 구조적 인과모델, 반사실적 추론, 인과 발견 알고리즘 등의 방법론을 논의하였다. 본 연구는 소셜 미디어 분석, 경제 정책, 공중 보건, 교육 분야에서의 응용 사례를 제시하며, 인과적 딥러닝이 복잡한 사회 현상에 대한 세밀한 이해를 가능케 함을 보여주고 있다. 또한 모델의 복잡성, 인과 식별, 해석 가능성, 그리고 프라이버시 같은 윤리적 고려사항 등 주요 과제들을 다루었다. 향후 연구 방향으로 새로운 AI 아키텍처 개발, 실시간 인과 추론, 다중 도메인 일반화 등을 제시하였다. 비록 한계점들이 존재하지만, 인과적 딥러닝은 사회과학 연구 강화와 증거기반 정책 수립에 상당한 잠재력을 보이며, 전 세계적인 복잡한 사회 문제 해결에 기여할 것으로 기대된다. 특히 본 연구는 빅데이터 환경에서의 인과관계 식별과 해석의 중요성을 강조하며, 전통적인 통계적 방법론과 최신 딥러닝 기술의 결합이 가져올 시너지 효과를 탐구하고 있다. 또한 이 분야의 발전이 사회과학 연구의 패러다임을 어떻게 변화시킬 수 있는지에 대한 논의를 제공함으로써, 향후 사회과학과 인공지능 기술의 융합 연구에 대한 방향성을 제시하고자 하였다.
With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.
본 연구에서는 고등학교 학생들의 성취 목적(과제지향/수행 지향/수행 회피), 유능감 등의 동기 변인과 학습 전략(심층적/피상적), 자기 조절 능력 등의 인지 변인 및 화학 선다형 수리 문제 해결력 사이의 인과관계를 경로 분석을 통해 조사하였다. 연구 결과, 유능감과 과제 지향 목적은 자기 조절 능력을 통하여 화학 수리 문제 해결력에 긍정적 영향을 미쳤으며, 특히 유능감은 인지 변인을 경유하지 않고도 직접적으로 화학 수리 문제 해결력에 긍정적 영향을 주는 것으로 조사되었다. 인지 변인 중 심층적 학습 전략은 유능감과 과제 지향 목적의 영향을 받았고 피상적 학습 전략은 수행 회피 목적의 영향을 받았으나, 이러한 학습 전략과 화학 수리 문제 해결력 사이에는 인과관계가 존재하지 않았다.
The research is to identify important diffusion factors and their effects on green car diffusion process using system dynamics perspectives and a causal-loop analysis. Through a deep review on previous research, we have found the important factors of green car diffusion process. Price, driving range, network effect, recharge system, fuel cost had important facilitation on consumer attraction and green car diffusion. Based on the review, we have constructed a causal loop diagram explaining hybrid car diffusion process. We have found 3 important reinforcing loops in the causal loop diagram. Loop for learning & economies of scale(supply side), loop for network effect(consumer side), and loop for battery development(technology side) had most significant roles in the whole diffusion process. Through a deliberate analysis on the 3 causal loops, we have found meaningful results. First, there seems to exist a critical mass in the diffusion. Second, of the 3 loops, the battery technology had most significant role. Third, not consumer installed base but sales must be a standard to decide whether the critical mass is achieved or not. Based on these findings, several meaningful implications are suggested for the government and corporations related to the green car industries.
복잡하고 비선형적인 특징을 갖는 시계열 데이터를 예측하기 위해 딥러닝 기법이 널리 사용되고 있다. 본 연구에서는 최근에 개발된 WaveNet을 개선하고 워크포워드 검증 기법을 적용하여 전력 소비량 데이터를 24시간 이전에 예측하고자 한다. 원래 WaveNet은 오디오 데이터 예측에 사용하고자 고안되었으며, 장기간의 데이터를 효과적으로 예측하기 위해 1차원 팽창인과 합성곱(1D dilated causal convolution)을 사용한다. 먼저, WaveNet이 부호화된 정수 값이 아니라 실수 값을 출력하여 전력 데이터를 예측하기 적합하도록 개선하였다. 다음으로 학습 과정에 적용된 하이퍼파라미터(입력 기간, 배치 크기, WaveNet 블록 개수, 팽창 비율, 학습률 변경)를 조정하여 적절한 성능을 나타내도록 하였다. 마지막으로 성능 평가를 통해 전통적인 홀드아웃 검증 기법보다 본 연구에서 사용한 워크포워드 검증 기법이 전력 소비량 데이터 예측에 우수함 성능을 나타냄을 확인하였다.
The purposes of this study were to investigate the intercorrelations among various motivational patterns and learning strategies and to examine the differences in motivation and strategy usage in terms of students' science achievement level, gender, and grade. A questionnaire on achievement goal, self-efficacy, self-concept of ability, expectancy, value, causal attributions, and learning strategies was administered to 360 junior high/high school students (178 males, 182 females). Students who adopted performance-oriented goal tended not to be task oriented. Task-oriented students had high levels of self-efficacy, high self-concept of ability, and expectancies for future performance in science. They also valued science and attributed thier failures to the lack of effort. However, performance-oriented students evaluated their ability negatively, did not value science, and attributed thier failures to uncontrollable causes. With respect to learning strategy, task-oriented students tended to use deep-level strategy, whereas performance-oriented students tended to use surface-level strategy and not to use deep-level strategy. High-achieving students, boys, and junior high school students were more task-oriented, evaluated their ability more positively, and valued science more than low-achieving students, girls, and high school students, respectively. High-achieving students and boys also used deep-level strategy more than each of their counterparts. However, no significant difference in learning strategy was found between junior high school students and high school students. Educational implications of these findings are discussed.
본 연구는 딥러닝을 활용하여 교량 점검보고서에서 손상 및 손상 인자를 자동으로 식별하는 방법을 제안한다. 교량 점검보고서에는 점검 결과 발견된 손상 및 원인 분석 결과가 기록되어 있다. 그러나 점검보고서의 양이 방대하여 인력으로 보고서로부터 정보를 수집하는 데 한계가 있다. 따라서 본 연구에서는 딥러닝 기반 개체명 인식 방법을 활용하여 교량 점검보고서 텍스트로부터 손상 및 손상 인자에 해당하는 단어들을 식별할 수 있는 모델을 제안한다. 모델 구현의 주요 방법론으로는 개체명 인식(Named Entity Recognition), 워드 임베딩(Word Embedding), 딥러닝의 일종인 순환신경망(Recurrent Neural Network)을 활용하였다. 실험 결과 제안된 모델은 1)훈련 데이터에 포함된 손상 및 손상 인자 단어들을 잘 식별할 수 있고, 2)단어 주변 맥락에 따라 특정 단어가 손상에 해당하는지 손상 인자에 해당하는지 잘 판별할 수 있을 뿐만 아니라, 3)훈련 데이터에 포함되지 않은 새로운 종류의 손상 단어도 잘 인식할 수 있는 것으로 확인되었다.
최근 전력수요를 예측하기 위해 통계기반 시계열 분석 기법을 대체하기 위해 딥러닝 기법을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 전력수요 예측 연구 결과를 분석한 결과, LSTM 기반 예측 모델의 성능이 우수한 것으로 규명되었으나 장기간의 지역 범위 전력수요 예측에 대해 LSTM 기반 모델의 성능이 충분하지 않음을 확인할 수 있다. 본 연구에서는 기온 데이터를 반영하여 24시간 이전에 전력수요를 예측하는 WaveNet 기반 딥러닝 모델을 개발하여, 실제 사용하고 있는 통계적 시계열 예측 기법의 정확도(MAPE 값 2%)보다 우수한 예측 성능을 달성하는 모델을 개발하고자 한다. 먼저 WaveNet의 핵심 구조인 팽창인과 1차원 합성곱 신경망 구조를 소개하고, 전력수요와 기온 데이터를 입력값으로 모델에 주입하기 위한 데이터 전처리 과정을 제시한다. 다음으로, 개선된 WaveNet 모델을 학습하고 검증하는 방법을 제시한다. 성능 비교 결과, WaveNet 기반 모델에 기온 데이터를 반영한 방법은 전체 검증데이터에 대해 MAPE 값 1.33%를 달성하였고, 동일한 구조의 모델에서 기온 데이터를 반영하지 않는 것(MAPE 값 2.31%)보다 우수한 전력수요 예측 결과를 나타내고 있음을 확인할 수 있다.
Journal of Information Technology Applications and Management
/
제17권3호
/
pp.57-69
/
2010
Many organizations have had deep interests in studies concerning leadership and in academic areas, in not only management but also psychology. Until now, leadership has been accentuated by managers or team leaders especially. Recently, however, the concept of self-leadership directing one's own activities through self-control or self-management is being focused on practices and in academia. This study is to investigate the influence between self-leadership strategies and learning performance in IT classes mediated by attitude of attendance focused on the social science students in a university. Research results can give us direction of task-taking attitudes in firms or learning attitudes in teaching organizations and implications to human resource managers who are in charge of improving learning performance or productivity.
Septika Prismasari;Kyuseok Kim;Hye Young Mun;Jung Yun Kang
치위생과학회지
/
제24권1호
/
pp.22-28
/
2024
Background: Particulate matter (PM) has been extensively observed due to its negative association with human health. Previous research revealed the possible negative effect of air pollutant exposure on oral health. However, the predictive model between air pollutant exposure and the prevalence of periodontitis has not been observed yet. Therefore, this study aims to propose a predictive model for the number of patients with periodontitis exposed to PM and atmospheric factors in South Korea using deep learning. Methods: This study is a retrospective cohort study utilizing secondary data from the Korean Statistical Information Service and the Health Insurance Review and Assessment database for air pollution and the number of patients with periodontitis, respectively. Data from 2015 to 2022 were collected and consolidated every month, organized by region. Following data matching and management, the deep neural networks (DNN) model was applied, and the mean absolute percentage error (MAPE) value was calculated to ensure the accuracy of the model. Results: As we evaluated the DNN model with MAPE, the multivariate model of air pollution including exposure to PM2.5, PM10, and other atmospheric factors predict approximately 85% of the number of patients with periodontitis. The MAPE value ranged from 12.85 to 17.10 (mean±standard deviation=14.12±1.30), indicating a commendable level of accuracy. Conclusion: In this study, the predictive model for the number of patients with periodontitis is developed based on air pollution, including exposure to PM2.5, PM10, and other atmospheric factors. Additionally, various relevant factors are incorporated into the developed predictive model to elucidate specific causal relationships. It is anticipated that future research will lead to the development of a more accurate model for predicting the number of patients with periodontitis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.