• 제목/요약/키워드: Causal Deep Learning

검색결과 16건 처리시간 0.019초

AI, 인과성, 사회과학의 통합: 인과 딥러닝을 통한 사회현상의 이해 (Integration of AI, Causality, and Social Sciences: Understanding Social Phenomena through Causal Deep Learning)

  • 이석민
    • 분석과 대안
    • /
    • 제8권3호
    • /
    • pp.125-150
    • /
    • 2024
  • 이 연구는 사회과학 연구에서 인공지능과 인과추론의 통합, 특히 인과적 딥러닝에 초점을 맞추고, Pearl의 구조적 인과모델, Rubin의 잠재적 결과 프레임워크, Schölkopf의 인과적 표현 학습 등 주요 이론들을 검토하였다. 또한 딥러닝을 활용한 구조적 인과모델, 반사실적 추론, 인과 발견 알고리즘 등의 방법론을 논의하였다. 본 연구는 소셜 미디어 분석, 경제 정책, 공중 보건, 교육 분야에서의 응용 사례를 제시하며, 인과적 딥러닝이 복잡한 사회 현상에 대한 세밀한 이해를 가능케 함을 보여주고 있다. 또한 모델의 복잡성, 인과 식별, 해석 가능성, 그리고 프라이버시 같은 윤리적 고려사항 등 주요 과제들을 다루었다. 향후 연구 방향으로 새로운 AI 아키텍처 개발, 실시간 인과 추론, 다중 도메인 일반화 등을 제시하였다. 비록 한계점들이 존재하지만, 인과적 딥러닝은 사회과학 연구 강화와 증거기반 정책 수립에 상당한 잠재력을 보이며, 전 세계적인 복잡한 사회 문제 해결에 기여할 것으로 기대된다. 특히 본 연구는 빅데이터 환경에서의 인과관계 식별과 해석의 중요성을 강조하며, 전통적인 통계적 방법론과 최신 딥러닝 기술의 결합이 가져올 시너지 효과를 탐구하고 있다. 또한 이 분야의 발전이 사회과학 연구의 패러다임을 어떻게 변화시킬 수 있는지에 대한 논의를 제공함으로써, 향후 사회과학과 인공지능 기술의 융합 연구에 대한 방향성을 제시하고자 하였다.

인과적 인공지능 기반 데이터 분석 기법의 심층 분석을 통한 인과적 AI 기술의 현황 분석 (Deep Analysis of Causal AI-Based Data Analysis Techniques for the Status Evaluation of Casual AI Technology)

  • 차주호;류민우
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.45-52
    • /
    • 2023
  • With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.

동기 및 인지 변인이 화학 선다형 수리 문제 해결에 미치는 영향: 성취 목적, 유능감, 학습 전략, 자기 조절 능력 (The Impact of Motivational and Cognitive Variables on Multiple-Choice Algorithmic Chemistry Problem Solving: Achievement Goal, Perceived Ability, Learning Strategy, and Self-Regulation)

  • 전경문;박현주;노태희
    • 한국과학교육학회지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2006
  • 본 연구에서는 고등학교 학생들의 성취 목적(과제지향/수행 지향/수행 회피), 유능감 등의 동기 변인과 학습 전략(심층적/피상적), 자기 조절 능력 등의 인지 변인 및 화학 선다형 수리 문제 해결력 사이의 인과관계를 경로 분석을 통해 조사하였다. 연구 결과, 유능감과 과제 지향 목적은 자기 조절 능력을 통하여 화학 수리 문제 해결력에 긍정적 영향을 미쳤으며, 특히 유능감은 인지 변인을 경유하지 않고도 직접적으로 화학 수리 문제 해결력에 긍정적 영향을 주는 것으로 조사되었다. 인지 변인 중 심층적 학습 전략은 유능감과 과제 지향 목적의 영향을 받았고 피상적 학습 전략은 수행 회피 목적의 영향을 받았으나, 이러한 학습 전략과 화학 수리 문제 해결력 사이에는 인과관계가 존재하지 않았다.

친환경차 확산전략에 대한 시스템다이내믹스 접근과 인과지도 분석 (System Dynamics Approaches on Green Car Diffusion Strategies and the Causal Diagram Analysis)

  • 박경배
    • 한국시스템다이내믹스연구
    • /
    • 제13권4호
    • /
    • pp.33-55
    • /
    • 2012
  • The research is to identify important diffusion factors and their effects on green car diffusion process using system dynamics perspectives and a causal-loop analysis. Through a deep review on previous research, we have found the important factors of green car diffusion process. Price, driving range, network effect, recharge system, fuel cost had important facilitation on consumer attraction and green car diffusion. Based on the review, we have constructed a causal loop diagram explaining hybrid car diffusion process. We have found 3 important reinforcing loops in the causal loop diagram. Loop for learning & economies of scale(supply side), loop for network effect(consumer side), and loop for battery development(technology side) had most significant roles in the whole diffusion process. Through a deliberate analysis on the 3 causal loops, we have found meaningful results. First, there seems to exist a critical mass in the diffusion. Second, of the 3 loops, the battery technology had most significant role. Third, not consumer installed base but sales must be a standard to decide whether the critical mass is achieved or not. Based on these findings, several meaningful implications are suggested for the government and corporations related to the green car industries.

  • PDF

WaveNet과 Work Forward Validation을 활용한 시계열 데이터 분석 (Time Series Data Analysis using WaveNet and Walk Forward Validation)

  • 윤협상
    • 한국시뮬레이션학회논문지
    • /
    • 제30권4호
    • /
    • pp.1-8
    • /
    • 2021
  • 복잡하고 비선형적인 특징을 갖는 시계열 데이터를 예측하기 위해 딥러닝 기법이 널리 사용되고 있다. 본 연구에서는 최근에 개발된 WaveNet을 개선하고 워크포워드 검증 기법을 적용하여 전력 소비량 데이터를 24시간 이전에 예측하고자 한다. 원래 WaveNet은 오디오 데이터 예측에 사용하고자 고안되었으며, 장기간의 데이터를 효과적으로 예측하기 위해 1차원 팽창인과 합성곱(1D dilated causal convolution)을 사용한다. 먼저, WaveNet이 부호화된 정수 값이 아니라 실수 값을 출력하여 전력 데이터를 예측하기 적합하도록 개선하였다. 다음으로 학습 과정에 적용된 하이퍼파라미터(입력 기간, 배치 크기, WaveNet 블록 개수, 팽창 비율, 학습률 변경)를 조정하여 적절한 성능을 나타내도록 하였다. 마지막으로 성능 평가를 통해 전통적인 홀드아웃 검증 기법보다 본 연구에서 사용한 워크포워드 검증 기법이 전력 소비량 데이터 예측에 우수함 성능을 나타냄을 확인하였다.

학생들의 과학 학습 동기 및 전략 (Student's Motivation and Strategy in Learning Science)

  • 전경문;노태희
    • 한국과학교육학회지
    • /
    • 제17권4호
    • /
    • pp.415-423
    • /
    • 1997
  • The purposes of this study were to investigate the intercorrelations among various motivational patterns and learning strategies and to examine the differences in motivation and strategy usage in terms of students' science achievement level, gender, and grade. A questionnaire on achievement goal, self-efficacy, self-concept of ability, expectancy, value, causal attributions, and learning strategies was administered to 360 junior high/high school students (178 males, 182 females). Students who adopted performance-oriented goal tended not to be task oriented. Task-oriented students had high levels of self-efficacy, high self-concept of ability, and expectancies for future performance in science. They also valued science and attributed thier failures to the lack of effort. However, performance-oriented students evaluated their ability negatively, did not value science, and attributed thier failures to uncontrollable causes. With respect to learning strategy, task-oriented students tended to use deep-level strategy, whereas performance-oriented students tended to use surface-level strategy and not to use deep-level strategy. High-achieving students, boys, and junior high school students were more task-oriented, evaluated their ability more positively, and valued science more than low-achieving students, girls, and high school students, respectively. High-achieving students and boys also used deep-level strategy more than each of their counterparts. However, no significant difference in learning strategy was found between junior high school students and high school students. Educational implications of these findings are discussed.

  • PDF

딥러닝 기반 교량 점검보고서의 손상 인자 인식 (Bridge Damage Factor Recognition from Inspection Reports Using Deep Learning)

  • 정세환;문성현;지석호
    • 대한토목학회논문집
    • /
    • 제38권4호
    • /
    • pp.621-625
    • /
    • 2018
  • 본 연구는 딥러닝을 활용하여 교량 점검보고서에서 손상 및 손상 인자를 자동으로 식별하는 방법을 제안한다. 교량 점검보고서에는 점검 결과 발견된 손상 및 원인 분석 결과가 기록되어 있다. 그러나 점검보고서의 양이 방대하여 인력으로 보고서로부터 정보를 수집하는 데 한계가 있다. 따라서 본 연구에서는 딥러닝 기반 개체명 인식 방법을 활용하여 교량 점검보고서 텍스트로부터 손상 및 손상 인자에 해당하는 단어들을 식별할 수 있는 모델을 제안한다. 모델 구현의 주요 방법론으로는 개체명 인식(Named Entity Recognition), 워드 임베딩(Word Embedding), 딥러닝의 일종인 순환신경망(Recurrent Neural Network)을 활용하였다. 실험 결과 제안된 모델은 1)훈련 데이터에 포함된 손상 및 손상 인자 단어들을 잘 식별할 수 있고, 2)단어 주변 맥락에 따라 특정 단어가 손상에 해당하는지 손상 인자에 해당하는지 잘 판별할 수 있을 뿐만 아니라, 3)훈련 데이터에 포함되지 않은 새로운 종류의 손상 단어도 잘 인식할 수 있는 것으로 확인되었다.

기온 데이터를 반영한 전력수요 예측 딥러닝 모델 (Electric Power Demand Prediction Using Deep Learning Model with Temperature Data)

  • 윤협상;정석봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.307-314
    • /
    • 2022
  • 최근 전력수요를 예측하기 위해 통계기반 시계열 분석 기법을 대체하기 위해 딥러닝 기법을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 전력수요 예측 연구 결과를 분석한 결과, LSTM 기반 예측 모델의 성능이 우수한 것으로 규명되었으나 장기간의 지역 범위 전력수요 예측에 대해 LSTM 기반 모델의 성능이 충분하지 않음을 확인할 수 있다. 본 연구에서는 기온 데이터를 반영하여 24시간 이전에 전력수요를 예측하는 WaveNet 기반 딥러닝 모델을 개발하여, 실제 사용하고 있는 통계적 시계열 예측 기법의 정확도(MAPE 값 2%)보다 우수한 예측 성능을 달성하는 모델을 개발하고자 한다. 먼저 WaveNet의 핵심 구조인 팽창인과 1차원 합성곱 신경망 구조를 소개하고, 전력수요와 기온 데이터를 입력값으로 모델에 주입하기 위한 데이터 전처리 과정을 제시한다. 다음으로, 개선된 WaveNet 모델을 학습하고 검증하는 방법을 제시한다. 성능 비교 결과, WaveNet 기반 모델에 기온 데이터를 반영한 방법은 전체 검증데이터에 대해 MAPE 값 1.33%를 달성하였고, 동일한 구조의 모델에서 기온 데이터를 반영하지 않는 것(MAPE 값 2.31%)보다 우수한 전력수요 예측 결과를 나타내고 있음을 확인할 수 있다.

Causal Relationship between Self-leadership Strategies and Learning Performance at IT Classes Mediated by Attitude of Participants : Social Science Students

  • Park, Ki-Ho
    • Journal of Information Technology Applications and Management
    • /
    • 제17권3호
    • /
    • pp.57-69
    • /
    • 2010
  • Many organizations have had deep interests in studies concerning leadership and in academic areas, in not only management but also psychology. Until now, leadership has been accentuated by managers or team leaders especially. Recently, however, the concept of self-leadership directing one's own activities through self-control or self-management is being focused on practices and in academia. This study is to investigate the influence between self-leadership strategies and learning performance in IT classes mediated by attitude of attendance focused on the social science students in a university. Research results can give us direction of task-taking attitudes in firms or learning attitudes in teaching organizations and implications to human resource managers who are in charge of improving learning performance or productivity.

  • PDF

A Proposal for a Predictive Model for the Number of Patients with Periodontitis Exposed to Particulate Matter and Atmospheric Factors Using Deep Learning

  • Septika Prismasari;Kyuseok Kim;Hye Young Mun;Jung Yun Kang
    • 치위생과학회지
    • /
    • 제24권1호
    • /
    • pp.22-28
    • /
    • 2024
  • Background: Particulate matter (PM) has been extensively observed due to its negative association with human health. Previous research revealed the possible negative effect of air pollutant exposure on oral health. However, the predictive model between air pollutant exposure and the prevalence of periodontitis has not been observed yet. Therefore, this study aims to propose a predictive model for the number of patients with periodontitis exposed to PM and atmospheric factors in South Korea using deep learning. Methods: This study is a retrospective cohort study utilizing secondary data from the Korean Statistical Information Service and the Health Insurance Review and Assessment database for air pollution and the number of patients with periodontitis, respectively. Data from 2015 to 2022 were collected and consolidated every month, organized by region. Following data matching and management, the deep neural networks (DNN) model was applied, and the mean absolute percentage error (MAPE) value was calculated to ensure the accuracy of the model. Results: As we evaluated the DNN model with MAPE, the multivariate model of air pollution including exposure to PM2.5, PM10, and other atmospheric factors predict approximately 85% of the number of patients with periodontitis. The MAPE value ranged from 12.85 to 17.10 (mean±standard deviation=14.12±1.30), indicating a commendable level of accuracy. Conclusion: In this study, the predictive model for the number of patients with periodontitis is developed based on air pollution, including exposure to PM2.5, PM10, and other atmospheric factors. Additionally, various relevant factors are incorporated into the developed predictive model to elucidate specific causal relationships. It is anticipated that future research will lead to the development of a more accurate model for predicting the number of patients with periodontitis.