• Title/Summary/Keyword: Cathodic

Search Result 754, Processing Time 0.028 seconds

Cycle Performances of Spinel-type $Li_xMn_2O_4$ in 4V Lithium Rechargeable Cells (리튬 2차 전지의 양극재료로 사용되는 스피넬형 망간산화물의 충방전 특성)

  • Jang, Dong H.;Oh, Seung M.
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.122-134
    • /
    • 1998
  • In this review, we describe the electrochemical properties of spinel-type lithium manganese oxides $(Li_xMn_2O_4)$ and their failure modes encountered in 4 V lithium rechargable cells. The long-term cyclability (reversibility) of spinel electrodes is determined partly by the purity, size and distribution of spinel particles, and also by the microstructure of electrode plates. A proper selection of electrolytes is another important task in cyclability enhancements. In the spinel preparation, impurity formation and cation mixing should be minimized. The carbon content in composite cathodes should also be minimized to the extent where the cell polarization does not bring about adverse effects on cell performances. The binder content should be optimized on the basis of dispersion of component materials and mechanical strength of the plates. Cathodic capacity losses arising from solvent oxidation and spinel dissolution can be mitigated by using electrolytes composed of carbonates and/or fluorine-containing lithium salts. The carbon additives may be selected after a trade-off between the cell polarization in composite cathodes and the solvent oxidation on carbon surface.

  • PDF

Separation of Soybean Protein by Free-flow Electrophoresis (자유유동 전기이동법에 의한 대두단백질 분리)

  • 한재갑;류화원
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • The effect of operating conditions on separation of soybean proteins in a home-made free-flow electrophoresis apparatus was investigated. Measurement of the pH, conductivity, and UV-absorbance(280 nm) were carried out at each run and the purity of the sample was tested with SDS-PAGE analysis. The soybean extract pretreated with Tris and boric acid was mixed with the amino acids composed of glutamic acid, histidine, arginine, glycine(1 mM each) with glycyl-glycine(2mM) and KCl(1mM). When the cellulose acetate was used as a compartment between the electrode and the buffer solution in the cell, pH distribution in the separation cell varied from 3.0 at the anodic side to 8.0 at the cathodic side and had two inflection point. The applied voltage was from 300V to 1000V and the separation was better at a higher voltage but the voltage was limited by the capability of the cooling system due to Joule heat. The proteins focused near the middle of the channel. From the change of pH and conductivity it was found that the ions in the channel moved out to the electrodes through the membrane. In the case when the concentration of the buffer solution was increased 5 times, proteins were focused at 300V. We could not increase up to the ten times of the concentration since the temperature difference between inlet and outlet was more than $25^{\circ}C$ and denaturation of proteins was expected. When ion-exchange membranes were used U-type pH distribution was set up due to the ionic polarization near the membrane. The commercial ampholytes, instead of the mixed amino acids showed not much improvements in purity of the separated sample.

  • PDF

Studies on the anodic oxidation of some volatile organic halogen compounds(THM) (휘발성 할로겐 화합물(THM)의 양극 산화에 관한 연구)

  • Yoo, K.S.;Park, S.Y.;Yang, S.B.;Woo, S.B.
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.264-273
    • /
    • 1997
  • Anodic oxidation reaction was applied to remove trihalomethanes in an aqueous solution. Each component was determined by using solid phase microextraction(SPME) fiber and GC-ECD. Anodic and cathodic compartments were separated in order to protect contaminants and connected by $KNO_3$-agar bridge. The calibration graphs of the 6 THM components were shown good linearlity from a few ppb up to a few hundreds ppb concentration level. Anodes such as platinum(Pt), titanium(Ti). zircornium(Zr), titanium metal coated with iridium(Ti-Ir), and glassy carbon coated with mixed valence ruthenium(mv Ru) were tried to remove the THMs at different potentials. The best result was obtained on the Ti-Ir anode applied 9 volts DC. The electrode could effectively remove almost all the THM components from the stirring solution within about 1.5 hours. The glassy carbon electrode coated with mixed valence ruthenium showed excellent removing effect at the begining, but the maximum removing level was remained at 60% probably due to the destruction of the electrode surface. The concentration of chloroform, however, tends to be increased due to the electrode reaction producing the component at the condition.

  • PDF

Honeycomb-type Single Chamber SOFC Running on Methane-Air Mixture (Methane-Air 혼합 Gas에서 구동하는 하니컴 형태의 SC-SOFC)

  • Park Byung-Tak;Yoon Sung Pil;Kim Hyun Jae;Nam Suk Woo;Han Jonghee;Lim Tae-Hoon;Hong Seong-Ahn;Lee Dokyol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.306-309
    • /
    • 2005
  • One of the most critical issues in sol id oxide fuel cell (SOFC)running on hydrocarbon fuels is the risk of carbon formation from the fuel gas. The simple method to reduce the risk of carbon formation from the reactions is to add steam to the fuel stream, leading to the carbon gasification react ion. However, the addition of steam to fuel is not appropriate for the auxiliary power unit (APU) and potable power generation (PPG) systems due to an increase of complexity and bulkiness. In this regard, many researchers have focused on so-called 'direct methane' operation of SOFC, which works with dry methane without coking. However, coking can be suppressed only by the operation with a high current density, which may be a drawback especially for the APU and PPG systems. The single chamber fuel cell (SC-SOFC) is a novel simplification of the conventional SOFC into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. Moreover it allows compact and seal-free stack design. In this study, we fabricated honeycomb type mixed-gas fuel cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-structured SOFC with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites. We will discuss that the anode supported honeycomb type cell running on mixed gas condition.

  • PDF

Solubilization of Proteins from Human Lymph Node Tissue and Two-Dimensional Gel Storage

  • De Marqui, Alessandra Bernadete Trovo;Vidotto, Alessandra;Polachini, Giovana Mussi;De Mattos Bellato, Claudia;Cabral, Hamilton;Leopoldino, Andreia Machado;De Gois Filho, Jose Francisco;Fukuyama, Erica Erina;Settanni, Flavio Aurelio Parente;Cury, Patricia Maluf;Bonilla-Rodriguez, Gustavo Orlando;Palma, Mario Sergio;Tajara, Eloiza Helena
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.216-222
    • /
    • 2006
  • In the present study, we compared six different solubilization buffers and optimized two-dimensional electrophoresis (2-DE) conditions for human lymph node proteins. In addition, we developed a simple protocol for 2-D gel storage. Efficient solubilization was obtained with lysis buffers containing (a) 8M urea, 4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 40 mM Tris base, 65 mM DTT(dithiothreitol) and 0.2% carrier ampholytes; (b) 5M urea, 2M thiourea, 2% CHAPS, 2% SB 3-10 (N-decyl-N, N-dimethyl-3-ammonio-1-propanesulfonate), 40mM Tris base, 65 mM DTT and 0.2% carrier ampholytes or (c) 7M urea, 2M thiourea, 4% CHAPS, 65 mM DTT and 0.2% carrier ampholytes. The optimal protocol for isoelectric focusing (IEF) was accumulated voltage of 16,500 Vh and 0.6% DTT in the rehydration solution. In the experiments conducted for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), best results were obtained with a doubled concentration (50 mM Tris, 384 mM glycine, 0.2% SDS) of the SDS electrophoresis buffer in the cathodic reservoir as compared to the concentration in the anodic reservoir (25 mM Tris, 192 mM glycine, 0.1% SDS). Among the five protocols tested for gel storing, success was attained when the gels were stored in plastic bags with 50% glycerol. This is the first report describing the successful solubilization and 2D-electrophoresis of proteins from human lymph node tissue and a 2-D gel storage protocol for easy gel handling before mass spectrometry (MS) analysis.

Determination of Estrone by Adsorptive Stripping Voltammetry (흡착 벗김 전압전류법에 의한 에스트론의 정량)

  • Hong, Taekee;Kyong, Jin Burm;Lee, Hyun Jung;Czae, Myung-Zoon
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 1999
  • Estrone such as estriol and estradiol can not be determined by votammetric methods, because these are electrochemically inactive in the potential windows for mercury drop electrode. Nitro-derivatives of estrone are electro active and nitration of estrone is accomplished by heating the solution involving estrone and sodium nitrite in a water-bath at $100^{\circ}C$ for 30 min. Such nitro-derivatives are determined directly by voltammetry. The electrochemical behavior for nitrated estrone was investigated by cyclic voltammetry. The trace estrone was determinated by differential pulse adsorptive cathodic stripping voltammetry. Nitrated estrone gives a well defined voltammetric wave at ca. - 0.61 V (vs. Ag/AgCl electrode). The electrochemical reaction was irreversible process in sodium borate buffer at pH 11 and nitrated estrone was strongly adsorbed on the surface of mercury electrode. The optimal experimental conditions for the determination of nitrated esterone were found to be 0.05 M sodium nitrate, 0.01 M sodium borate, pH 11.0, and an accumlation potential of 0.10 V (vs. Ag/AgCl). The detection limit was as low as $1{\times}10^{-9}M$ for estrone with 2 min accumulation time.

  • PDF

Electrochemical Behavior of Light Lanthanide Ions in Nonaqueous Solution, Flow Injection Determination and Photochemical Characterization of Eight Coordinated Chelates of Heavy Metal Ions (Part I) Electrochemical Behavior of Light Lanthanide Ions in Nonaqueous Solution (물아닌용매에서 가벼운 란탄족 이온의 전기화학적 거동, 흐름주입에 의한 정량 및 중금속이온의 킬레이트형 8-배위 착물의 광화학적 특성 (제 1 보) 물아닌용매에서 가벼운 란탄족이온의 전기화학적 거동)

  • Kang, Sam-Woo;Pak, Chong-Min;Do, Lee-Mi;Song, Myoung-Kyu;Kim, Il-Kwang
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.361-369
    • /
    • 1994
  • Voltammetric behavior of some light lanthanide ions($La^{3+}$, $Pr^{3+}$, $Nd^{3+}$, $Sm^{3+}$ and $Eu^{3+}$) in acetonitrile(AN) and dimethylformamide(DMF) has been investigated by direct current, differential pulse polarography and cyclic voltammetry. The reduction of $La^{3+}$, $Pr^{3+}$ and $Nd^{3+}$ in 0.1M TEAP proceeded directly to the metallic state through three-electron charge transfer of irreversible process where as $Sm^{3+}$ and $Eu^{3+}$ proceeded by charge transfer of two steps. As the results of the cyclic voltammetric investigation, the first step reduction of $Sm^{3+}$ and $Eu^{3+}$ were a quasireversible reaction, the second step reductions were an irreversible reaction. The cathodic peak currents of the differential pulse polarogram showed adsorptive properties at lower sweep rates and high concentrations of these metal ions. The peak potenital was shifted to a negative petential and the peak current decreased with the increase of percentage of water in AN. On the other hand, the peak potential was shifted to a positive potential and the peak current decreased with an increased percentage of water in DMF.

  • PDF

Determination of cimetidine injection by square wave voltammetry (네모파 전압전류법에 의한 Cimetidine 주사액의 정량분석)

  • Lee, Soo-Jung;Hahn, Young-Hee
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.68-73
    • /
    • 2010
  • In order to develop the square wave voltammetric method determining cimetidine in an ampoule for injection, $5.00{\times}10^{-4}\;M$ cimetidine HCl solutions prepared with phosphate buffers of various pH values (3.01~8.97) were investigated by SWV. The well defined single peak due to the electrochemical reduction of -C=N-C$\equiv$N- in the structure of cimetidine moved towards the cathodic direction by -0.051V/pH as the pH values were increased indicating the involvement of hydrogen in its reduction. The calibration curves of cimetidine HCl in the concentration range between $1.00{\times}10^{-5}\;M$ and $5.00{\times}10^{-3}\;M$ prepared using three phosphate buffers yielded the slopes of 127,407nA/M (pH 3.01), 115,125nA/M (pH 5.00) and 111,287nA/M(pH 7.00) with excellent linearities of $R^2{\geqq}0.9997$. When one ampoule of Tagma Inj.$^{(R)}$ was analyzed by standard addition method by SWV, the within-day precision study (n=4) on the day of sample preparation resulted in the contents of cimetidine as $203{\pm}3.8\;mg$ (102% of the specified contents, RSD of 1.9%) and the inter-day precision (n=4) through 5 days was reasonable as 1.3% of RSD.

A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode (LiCl-KCl 용융염에서 광학적으로 투명한 전극을 이용한 사마륨 이온의 전기화학적 거동에 관한 연구)

  • Lee, Ae-Ri;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 2017
  • A spectroelectrochemical method has been applied to investigate the electrochemical behaviors and identify the kinds of samarium ions dissolved in high temperature molten LiCl-KCl eutectic. An optically transparent electrode (OTE) fabricated with a tungsten gauze as a working electrode has been used to conduct cyclic voltammetry and potential step chronoabsorptometry. Based on the reversibility of the redox reaction of $Sm^{3+}/Sm^{2+}$, which was determined from the cyclic voltammograms, the formal potential and the diffusion coefficient were calculated to be -1.99 V vs. $Cl_2/Cl^-$ and $2.53{\times}10^{-6}cm^2{\cdot}s^{-1}$, respectively. From the chronoabsorptometry results at the applied potential of -1.5 V vs. Ag/AgCl (1wt%), the characteristic peaks of absorption for samarium ions were determined to be 408.08 nm for $Sm^{3+}$ and 545.62 nm for $Sm^{2+}$. Potential step chronoabsorptometry was conducted using the anodic and the cathodic peak potentials from the voltammograms. Absorbance analysis at 545.63 nm shows that the diffusion coefficient of $Sm^{3+}$ is $2.15{\times}10^{-6}cm^2{\cdot}s^{-1}$, which is comparable to the value determined by cyclic voltammetry at the same temperature.

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.