• 제목/요약/키워드: Cathodic

검색결과 753건 처리시간 0.03초

티타늄과 ITO유리기판에 전착법으로 성장된 $Hg_{1-x}Cd_xTe$ 박막과 성장 조건이 결정구조 및 성분 조성비에 미치는 영향 (Influence of Growth Conditions on the Structural and Atomic Fractional Properties of $Hg_{1-x}Cd_xTe$ Films Electrodeposited onto Titanium and ITO glass)

  • 최춘태
    • 센서학회지
    • /
    • 제10권1호
    • /
    • pp.80-85
    • /
    • 2001
  • $Hg_{1-x}Cd_xTe$(MCT)박막을 $CdSO_4$, $TeO_2$, 및 $HgCl_2$이 혼합된 수용액을 사용하여 음극 전착법으로 ITO 유리와 티타늄기판 위에 성장하였다. 주된 박막의 성장 조건 변수로 전착전위와 성장 온도를 고려하였다. 전착된 MCT 박막은 SEM사진과 XRD 및 EPMA측정을 통하여 박막의 성장 조건이 결정 구조와 성분 조성비에 미치는 영향을 분석 연구하였다. XRD 분석으로부터 전착된 MCT 박막은 cubic zinc blonde 구조임을 알 수 있었고, EPMA에 의한 성분조성비의 분석결과로부터 전착전위를 변화시키므로서 MCT의 성분 조성비를 조절할 수 있음을 알 수 있었다.

  • PDF

Power Density Enhancement of Anion-Exchange Membrane-Installed Microbial Fuel Cell Under Bicarbonate-Buffered Cathode Condition

  • Piao, Jingmei;An, Junyeong;Ha, Phuc Thi;Kim, Taeyoung;Jang, Jae Kyung;Moon3, Hyunsoo;Chang, In Seop
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.36-39
    • /
    • 2013
  • We introduce a high-performance microbial fuel cell (MFC) that was operated using a 0.1M bicarbonate buffer as the cathodic electrolyte. The MFC had a 136.42 $mW/m^2$ maximum power density under continuous feeding of 5 mM acetate as fuel. Results of the electrode potential measurements showed that the cathode potential of the bicarbonate-buffered condition was higher than the phosphate-buffered condition, although the phosphate condition had less interfacial resistance between the membrane and electrolyte. Therefore, we posit here that the increased power of the bicarbonate-buffered MFC may be caused by the higher cathode potential rather than by the interfacial membrane-electrolyte resistance.

Electrodeposition of Copper on AZ91 Mg Alloy in Cyanide Solution

  • Nguyen, Van Phuong;Park, Min-Sik;Yim, Chang Dong;You, Bong Sun;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.238-244
    • /
    • 2016
  • Copper electrodeposition on AZ91 Mg alloy was studied in views of preferential deposition on ${\alpha}$- or ${\beta}$- phases and how to achieve uniform deposition over the entire surface on ${\alpha}$- and ${\beta}$-phases in a cyanide solution. The inhomogeneous microstructure of AZ91 Mg alloy, particularly ${\alpha}$- and ${\beta}$-phases, was found to result in non-uniform deposition of zincate layer, preferential deposition of zincate on ${\beta}$-phases, which leads to non-uniform growth of copper layer during the following electrodeposition process. The preferential depositions of zincate can be attributed to higher cathodic polarizations on the ${\beta}$-phases. Pin-hole defects in the copper electrodeposit were observed at the center of large size ${\beta}$-phase particles which is ascribed to gas bubbles formed at the ${\beta}$-phases. The activation of AZ91 Mg alloy in hydrofluoric acid solution was used to obtain uniform growth of zincate layer on both the ${\alpha}$- and ${\beta}$-phases. By choosing an optimum activation time, a uniform zincate layer was obtained on the AZ91 Mg alloy surface and thereby uniform growth of copper was obtained in a cyanide copper electroplating solution.

천연해수 용액에서 STS 304와 용융 알루미늄 도금된 STS 304의 캐비테이션-침식 환경 하에서의 전기화학적 특성 (Electrochemical Characteristics under Cavitation-Erosion Environment of STS 304 and Hot-Dip Aluminized STS 304 in Sea Water Solution)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.26-31
    • /
    • 2016
  • In this paper, the characteristics of a cavitation-erosion damage behavior on the STS 304 and hot-dip aluminized STS 304 under cavitation environment in sea water solution was investigated. The electrochemical experiments were carried out by potential measurement, anodic/cathodic polarization test, Tafel analysis, and also galvanostatic experiment in current density variables for the samples. The apparatus of cavitation-electrochemical experiment was manufactured in compliance with modified ASTM G-32 standard, with the conditions of sea water temperature of $25^{\circ}C$ and the measurement, amplitude of $30{\mu}m$. The damage behavior was analyzed by an observation of surface mophologies and a measurement of damage depth by a scanning electron microscope(SEM) and a 3D microscope, respectively, after electrochemical test. After polarization experiment under cavitation environment, much higher damage depths for the hot-dip aluminized STS 304 were observed comparing to the untreated STS 304. In addition, higher corrosion current density in hot-dip aluminized STS 304 presented than that of untreated STS 304 as a result of Tafel analysis.

해수 중 음극방식 프로세스에 의한 강관의 석회질 피막 형성 및 특성 분석 (Formation of calcareous deposit films on steel pipe by cathodic protection process in natural seawater and their properties)

  • 박준무;최인혜;강재욱;강준;이찬식;이명훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.192-193
    • /
    • 2015
  • 음극방식은 피방식체를 일정 전위로 음극분극 하는 원리로써 외부전원을 인가하거나 비전위의 금속을 희생양극으로 연결하여 방식하는 방법이다. 해수 중에서 음극방식을 실시할 경우 음극 표면에 용존산소 환원반응과 수소발생반응이 일어나 $OH^-$ 이온이 발생하게 된다. 이러한 반응에 의해 생성되는 석회질 피막 (Calcareous deposit)은 강구조물의 부식방지를 위한 물리적인 방호벽 역할을 하면서 용존산소의 확산 및 이동을 억제하며, 전류밀도를 감소시킨다. Potentiostat 및 rectifier를 이용하여 정전위 및 정전류 조건에서 형성된 석회질 피막을 SEM, EDS, XRD를 통해 분석하고 이를 바탕으로 양극의 종류(Al, Zn) 및 1, 5, $10mA/m^2$의 전류밀도 조건에서 실제 강관에 형성된 석회질 피막의 메커니즘을 해명하였다. 또한 석회질 피막 형성 시 Steel Wire Mesh를 설치하여 그 영향에 대해서도 분석하였다. 석회질 피막의 내구성은 침지-자연전위 및 밀착성 테스트를 통해 평가되었다.

  • PDF

비시안 은도금욕의 가능성에 관한 연구 (A Study on the Feasibility of a Cyanide-Free Silver Plating Bath)

  • 이상화
    • 한국표면공학회지
    • /
    • 제29권2호
    • /
    • pp.140-145
    • /
    • 1996
  • Silver deposits formed on copper substrates by replacement reactions show poor adhesion, and a silver film plated on such a deposit does not adhere. Silver ion makes a highly stable complex with cyanide ion, so that in a silver cyanide solution, the activity of silver ion is very small. This is one of the reasons for the universal use of cyanide baths in the industrial silver plating. However, the consideration of the difference between the values of the stability constants for bath the silver-iodide complex and the copper-iodide complex suggest that the rate of replacement deposition of silver on the copper substrate in si]ver-potassium iodide solution, could be comparatively low. To confirm this, the rate of replacement deposition of silver in both a silver-potassium iodide solution ($AgNO_3$0.10 mol/L, KI 2.00 mol/L ) and a strike silver plating bath (AgCN 0.028 mol/L, KCN 1.15 mol/L ) was estimated from the current density corresponding to the point of intersection of the anodic and the cathodic polarization curves. These estimated values were almost the same, and it is suggested that the silver-potassium iodide solution is not only a cyanide free silver plating bath capable of employing a copper substrate but a silver plating bath which requires no strike plating.

  • PDF

Development of Microbial Fuel Cells Using Proteus vulgaris

  • 김남준;최영진;정선호;김성현
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권1호
    • /
    • pp.44-48
    • /
    • 2000
  • Microbial fuel cells comprising the microorganism P. vulgaris, thionin as a mediator, and various mono- and disaccharides in an anodic compartment have been developed. A cathodic compartment containing a Pt electrode and Fe$(CN)_6^{3-}$ was separated from an anode by the Nafion membrane. From absorbance-time measurements, it was found that the absorbance of thionin was not altered by the addition of P. vulgaris, even in the presence of sugars. However, thionin was effectively reduced when P. vulgaris was present. These results differ substantially from the case of safranine O, a phenazine-derivative, indicating that thionin takes up electrons during the metabolic oxidation processes of carbohydrates. Maximum fuel cell efficiency was observed at 37 $^{\circ}C$, optimum temperature for the growth of P. vulgaris, and 0.5 V cell voltage was obtained, which indicates that the metabolism of the microorganism directly affects the efficiency. Thionin concentration was closely related to cell performance. When the charging-discharging characteristics were tested with glucose, galactose, sucrose, maltose, and trehalose as carbon sources, galactose was found to give the highest coulombic efficiency. Cell performance was almost fully recovered with only small degradation when glucose and sucrose were used in the repetitive operation. Current was maintained nearly twice as long for sucrose than in the case of glucose.

A Study on Photoreceptor by Using the Effect of Additives

  • 유진;김영순;유국현
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.709-715
    • /
    • 2001
  • We have been studied photosensitization mechanism's additive effect, of perylene 3,4,9,10-tetracarboxyl-diimide and X-phthalocyanine (charge generation materials), using the photochemical and photoelectrochemical approach. It was found that the photoreceptor on the excited state reacts with metal oxide, which creates the charge transfer on the interface of SnO2/electrolyte. In the electrode (X5P1) made of five X-phthalocyanine and single perylene 3,4,9,10-tetracarboxyldiimide layers, the cathodic photocurrent of X-phthalocyanine in the 400-600 nm region was increased by the addition of perylene 3,4,9,10-tetracarboxyldiimide. The maximum wavelength of fluorescence of perylene 3,4,9,10-tetracarboxyldiimide showed no dependence on the temperature. The addition of 4-dibenzylamino-2-methylbenzaldehyde diphenylhydrazone known as charge transport material was represented as decreasing photocurrent for X-phthalocyanine and perylene 3,4,9,10-tetracarboxyldiimide, respectively. In the electrode (X1P1) made of single X-phthalocyanine and single perylene 3,4,9,10-tetracarboxyldiimide layers, an anodic photocurrent of about 10.5 nA was generated by addition of hydroquinone at 550 nm. And the characteristic of photoinduced discharge was shown to decrease by a factor of 5 and the speed of dark decay was increased by a factor of 1.2.

Substituent Effects and Correlations of Electrochemical Behaviors with Molecular Orbital Calculation of Thioxantone DerivativesⅠ

  • 곽경도;서무룡;하광수;백우현
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권5호
    • /
    • pp.527-530
    • /
    • 1998
  • This paper presents the electrochemistry and molecular orbital (MO) picture of a series of conformationally-restricted thioxantone derivatives. A series of $C_2-substituted$ thioxanthones were examined to probe the electronic influence of the substituent on the electrooxidation and electroreduction sites (i.e., on the electron densities at the 10-and 9-positions), respectively. In the presence of "electrophoric" groups such as C=O and S, characteristic electrochemical reduction and oxidation responses are observed. The electrochemical reaction was diffusion-controlled, because the $I_p/{\upsilon}^{1/2}$ ratio was constant for the anodic and cathodic wave of thioxantone derivatives. These substituent effects are presented in terms of correlations of oxidation (or reduction) potentials with the highest occupied molecular orbital (HOMO), or lowest unoccupied molecular orbital (LUMO) energies, respectively. There is good correlation between energies of the HOMO vs. $E_{pa}^{(+)}$ and energies of the LUMO vs. $E_{pc}^{(-)}$. Frontier Molecular Orbital (FMO) is changed by the functional group of thioxanthones. FMO energy level was offered us the information about the electron transfer direction, and the coefficient of FMO was offered the information about the electron transfer position. Sulfur atom has an important effect on oxidation potential, $E_{pa}^{(+)}$ and the carbonyl carbon has an important effect on reduction potential, $E_{pc}^{(-)}$. Therefore we were appreciated that the contribution of sulfur atom for the $E_{pa}^{(+)}$ and HOMO energies is larger than the contribution of carbonyl group for the $E_{pc}^{(-)}$ and LUMO energies.

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권5호
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.