• Title/Summary/Keyword: Cathodic

Search Result 753, Processing Time 0.033 seconds

Rapid Corrosion Test on Marine Reinforcing Steel (부식촉진에 의한 해양.항만 철근 콘크리트 구조물의 철근 방식에 관한 실험적 연구)

  • 정근성;문홍식;송호진;이상국;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.537-542
    • /
    • 2001
  • Recently long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. It needs to maintain the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steels in concrete structure is the most important cause for the durability of concrete structure which can be controlled by systematic preparatory corrosion protection works for economic and safe infrastructures. Various corrosion protection systems have been used for the corrosion protection of reinforcement steels from detrimental chemical components such as chloride, sulphate and etc. Since chloride can be penetrated into concrete in a variety way, an effective method has to be adopted by taking into full economical aspects and technical data of each protection system. The objective of this experimental study is to investigate the corrosion behavior of reinforcing steel in laboratory concrete specimens which are exposed to cyclic wet and dry saltwater, and then to develop pertinent corrosion protection system, such as corrosion inhibitors and cathodic protection for reinforced concrete bridges exposed to chloride environment. Resistance of various corrosion inhibitors and impressed current system have been experimentally evaluated under severe environmental conditions, and thus effective corrosion protection systems could have been Practically developed for future concrete construction.

  • PDF

Study of Corrosion-Induced Failure Mechanisms of Epoxy Coated Reinforcing Steel (Parts I and II)

  • Lee, Seung-kyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.396-401
    • /
    • 1995
  • Epoxy coated reinforcing steels (ECRs) were acquired from ten sources and coatings from each source were initially characterized in terms of defects, thickness, solvent extraction weight loss and hardness. Testing involved exposure in three aqueous solutions at elevated temperature (8$0^{\circ}C$) and in chloride-contaminated concrete slabs under outdoor exposure, It was found that the density and size of coating defects was the promary factor affecting ECR performance. The equivalent circuit analysis using electrochemical impedance spectroscopy (EIS) data indicated that the impedance response for well-performing ECR specimens showed no signs of active degradation at the interface although diffusional processes similar to those noted for poorly performing bars occurred here. Experimental results also indicated a relationship between corrosion behavior and bar source. Weight loss upon solvent extraction correlated with impedance reduction from hot water exposure. Coating defects during most of the tests, especially in high pH solutions containing chloride ions. ECRs with excessive coating defects, either initially present or ones which developed in service, performed poorly in every test category regardless of source. Forms of coating failure were extensive rusting at defects, blistering, wet adhesion loss, cathodic delamination, underfilm corrosion and coating cracks. These occurred sequentially or concurrently, depending on the condition of the ECR and nature of the environment

  • PDF

CORROSION OF STEEL GAS PIPELINE INDUCED BY SULFATE-REDUCING BACTERIA IN ANAEROBIC SOIL (혐기성 토양에 서식하는 황산염환원세균에 의한 가스배관의 미생물부식)

  • Li SeonYeob;Jeon KyungSoo;Kho YoungTai;Kang Tak
    • 한국가스학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.58-68
    • /
    • 2001
  • Microbiologically influenced corrosion (MIC) of carbon steel gas pipeline in soil environments was investigated at field and laboratory MIC is very severe corrosion and it is not easy to distinguish this corrosion from Inorganic corrosion because of its localized, pitting-type character Therefore, it is important to provide proper assessment techniques for the prediction, detection, monitoring and mitigation of MIC. It is possible to predict the MIC risk, i.e., the activity of sulfate-reducing bacteria (SRB) through the analysis of soil environments. Chemical, microbiological and surface analysis of corrosion products and metal attacked could reveal the possibility of the occurrence of MIC. Various electrochemical and surface analysis techniques could be used for the study of MIC. Among these techniques, thin-film electrical resistance (ER) type sensors are promising to obtain localized corrosion rate of MIC induced by SRB. It is also important to study the effect of cathodic protection (CP) on the MIC In case of coated pipeline, the relationship between coating disbondment and the activity of SRB beneath the disbanded coating is also important.

  • PDF

In-depth investigation and improvement of cathodic protection system for water pipelines (상수도관로 전기방식 시스템의 진단 및 개선 사례)

  • Han, Chang-Dong;Lee, Seung-Yong;Jang, Jeong-Ho;Lee, Sang-Gun;Choi, Jun;Kim, Tea-Ho;Jung, Sung-Won;Li, Seon-Yeob
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2015_2016
    • /
    • 2009
  • 전기방식이 실시되고 있는 상수도 관로는 관의 노후화, 코팅의 열화, 부적절한 방식시스템의 적용 및 타 시설물과의 간섭 등으로 부분적으로 방식전위 미달구간이 존재한다. 이러한 방식전위 미달구간에 대하여 토양환경 측정 및 방식소요전류량 산정, 간섭 시험 등을 통하여 토양환경은 부식이 '발생하는 구간' 및 '미약하게 발생'하는 구간으로 나타났다. 임시 가통전 시험을 통하여 방식소요전류량을 구할 수 있었다. 간섭영향 시험으로 간섭 여부 및 전식 발생지점을 추정할 수 있다. 현장 측정 결과와 설계기준을 바탕으로 적절한 전기방식 보강 계획을 수립하여 현장에 부분적으로 설치하였으며 방식상태를 분석하였다. 단순히 설계된 소요전류량만을 증가시키는 방안보다 부분적인 방식보강 및 주변 배관 상태를 고려하여 적절한 통합 방식방안을 적용하는 것이 더 효율적인 것으로 나타났다.

  • PDF

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

Purification and Properties of Extracellular Protease from Streptomyces rimosus (Streptomyces rimosus가 생산하는 Protease의 정제와 특성)

  • 김경미;이태경;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.407-411
    • /
    • 1989
  • Extracellular neutral pretense of Streptomyces rimosus producing oxytetracycline was purified by ammonium sulfate fractionation, DEAE Sephadex A-50 chromatography and Sephadex G-100 gel filteration, and was showed single band on the cathodic gel electrophoresis. The optimum pH and temperature of the enzyme were pH 8.0 and 6$0^{\circ}C$, respectively. The enzyme was activated about 80% in the presence of Co$^{2+}$ ion, and strongly inhibited by Hg$^{2+}$, Fe$^{2+}$ and chelatig agent, EDTA. Molecular weight of the enzyme was estimated to be 12, 000. The Km value of the enzyme of casein as a substrate was 2.7$\times$10$^{-4}$M.

  • PDF

Employing Laccase-Producing Aspergillus sydowii NYKA 510 as a Cathodic Biocatalyst in Self-Sufficient Lighting Microbial Fuel Cell

  • Abdallah, Yomna K.;Estevez, Alberto T.;Tantawy, Diaa El Deen M.;Ibraheem, Ahmad M.;Khalil, Neveen M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1861-1872
    • /
    • 2019
  • In the present work, we isolated and identified Aspergillus sydowii NYKA 510 as the most potent laccase producer. Its medium constituents were optimized to produce the highest possible amount of laccase, which was after 7 days at 31℃ and pH 5.2. Banana peel and peptone excelled in inducing laccase production at concentrations of 15.1 and 2.60 g/l, respectively. Addition of copper sulfate elevated enzyme yield to 145%. The fungus was employed in a microbial fuel cell (MFC). The best performance was obtained at 2000 Ω achieving 0.76 V, 380 mAm-2, 160 mWm-2, and 0.4 W. A project to design a self-sufficient lighting unit was implemented by employing a system of 2 sets of 4 MFCs each, connected in series, for electricity generation. A scanning electron microscopy image of A. sydowii NYKA 510 was utilized in algorithmic form generation equations for the design. The mixed patterning and patterned customized mass approach were developed by the authors and chosen for application in the design.

Preparation of SnO2 Film via Electrodeposition and Influence of Post Heat Treatment on the Battery Performances (전해도금법을 이용한 SnO2 제조 및 후 열처리가 전지 특성에 미치는 영향)

  • Kim, Ryoung-Hee;Kwon, Hyuk-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.61-66
    • /
    • 2017
  • $SnO_2$ was electrodeposited on nodule-type Cu foil at varing current density and electrodeposition time. Unlike the previous research results, when the anodic current is applied, the $SnO_2$ layer was not electrodeposited and the substrate is corroded. When the cathodic current was applied, the $SnO_2$ layer could be successfully deposited. At this time, the surface microstructure of the powdery type was observed, which showed similar crystallinity to amorphous and had a very large surface area. Crystallinity increased after low-temperature heat treatment at $250^{\circ}C$ or lower. As a result of evaluating the charge/discharge performances as an anode material for lithium ion battery, it was confirmed that the capacity of the heat treated $SnO_2$ was increased more than 2 times, but it still showed a limit point showing initial low coulombic efficiency and low cyclability. However, it was confirmed that the battery performances may be enhanced through optimizing the electrodeposition process and introducing post heat treatment.

Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.445-453
    • /
    • 2007
  • The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

Removal of endocrine disruptive compounds using dimensionally stable anode (DSA) (불용성 전극(DSA)을 이용한 내분비계 장애물질 제거)

  • Kim, Dong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1368-1373
    • /
    • 2008
  • An electrochemical reactor was designed and operated to treat the solution containing endocrine disruptive compounds such as phenol and bisphenol A. An experiment involving the electrochemical oxidation of bisphenol A was performed with the use of a dimensionally stable anode (DSA). The apparent current, conductivity, and the gap between cathode and anode were selected as design parameters. The phenol removal rate increased with an increase in apparent current. The bisphenol A removal rate increased with an increase in apparent current efficiency. An increase in the conductivity also led to an increase in the rate of removal of bisphenol A. The gap between cathode and anode did not affect the bisphenol A removal rate or the cathodic current efficiency.