• Title/Summary/Keyword: Cathodic

검색결과 754건 처리시간 0.035초

조절전위법 음전극 유기반응을 이용한 아조벤젠 유도체들의 합성 (Synthesis of Azobenzene Derivatives via Controlled Potential Cathodic Electrolysis)

  • 김병효;최용락;김대호;한영필;백운필;전영무
    • 전기화학회지
    • /
    • 제2권4호
    • /
    • pp.209-212
    • /
    • 1999
  • H-형의 분리 셀을 사용하여 중성 및 실온의 온화한 조건에서 조절 전위법 음전극 반응에 의한 nitroarene화합물들의 환원 짝지음 반응으로 높은 수율의 azobenzene유도체를 합성하였다. Pb또는 Pt cathode와 Pt anode를 사용하여 메탄을 용액 하에서 cyclic voltammetry에 근거하여 각 반응의 최적의 반응 조건을 결정한 후 반응을 실행하였으며, 대부분의 경우 환원 짝지음 반응은 치환기의 성질과 위치에 영향을 받지 않고 높은 수율로 성공적인 결과를 얻을 수 있었다.

광기능성 재료 $TiO_2$ 피막에 의한 STS304강의 방식 (Protection of STS304 Steel with Photo-Functional Material $TiO_2$ Coating)

  • 남기우;이승연;안석환;김종순;박인덕
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.307-311
    • /
    • 2002
  • This study was investigated the photoelectrochemical behavior of STS304 steel with $TiO_2$ thin films coating, applied by sol-gel method, for the purpose of cathodic photoprotection of the steel corrosion. One time $TiO_2$-coated STS304 steel adopted two kinds of $TiO_2$ sol solution has the most dominant photopotential abilities, which was -200mV vs. SCE and -500mV vs. SCE under illumination with 40W fluorescent lamp, respectively. That was more negative than the corrosion potential of the bare metal(-150 mV). The bleaching of TCE was confirmed on $TiO_2$-coated STS304 under UV-illumination with 20 W Black-light. This Study was concluded that $TiO_2$-coated STS304 exhibited both a cathodic photoprotection effect against corrosion and photocatalytic self-cleaning effect.

  • PDF

함정 발생 수중 전자기장 신호의 특성 및 측정 기법 (Characteristics and Measurement Method of the Underwater Electromagnetic Signature Emitted from a Naval Ship)

  • 양창섭;정현주;신승제
    • 한국군사과학기술학회지
    • /
    • 제9권2호
    • /
    • pp.11-19
    • /
    • 2006
  • The underwater electromagnetic signatures of a naval ship are mainly generated from three sources which are the permanent and induced magnetic field in the ship's hull and other ferrous components, the cathodic current electromagnetic field established by the Impressed Current Cathodic Protection(ICCP) system or the Sacrificial Anode and the stray electromagnetic fields generated by onboard equipment. These signatures can be minimized by certain design methods or installation of signature reduction equipment. In this paper, we represented the characteristic of the underwater electromagnetic signature and the signature reduction techniques for a naval ship. Also, we measured the electromagnetic field changes emitted from the real ship using the Electric and Magnetic field Measurement System(EMMS). We found that the underwater electromagnetic signature for a naval ship can be used as input or trigger signal in a surveillance system and an influence mine.

국가 기간 시설물의 전식 대책(안) (A Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA)

  • 배정효;하윤철;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1609-1611
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) system of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. In this paper, the mechanism of mitigation method of DC stray current for underground metallic structures is described.

  • PDF

국가기간시설물의 전식대책(안) 및 그 적용 사례(1) (A Case Study(1) of Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA)

  • 배정효;하윤철;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1612-1614
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP system is described.

  • PDF

양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성 (Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.

해수 중 펄스 전착 프로세스 의해 제작한 석회질 피막의 결정구조 제어 및 특성 평가 (Crystal Structure Control of Calcareous Deposit Films Formed by Pulse Electrodeposition Process in Seawater and Their Properties)

  • 박준무;이승효
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.103-110
    • /
    • 2019
  • As an anti-corrosion method in seawater, cathodic protection is widely recognized as the most effective and technically appropriate corrosion prevention methodology for marine structures against harsh corrosive environment. When applying the cathodic protection in seawater, the surface of the metal facilities the formation of compounds of $CaCO_3$ and $Mg(OH)_2$. These mixed compounds are generally called 'calcareous deposits'. This layer functions as a barrier against the corrosive environment and functions to further inhibit the corrosion process and then leading to a decrease in current demand for cathodic protection. However, calcareous deposit films are partially formed on the surface of the cathode and there are some difficulties to maintain both a corrosion resistance for a long period of time and a strong adhesion between deposits and base metal. In this study, the pulse electrodeposition process was applied to improve adhesion and corrosion resistance of the calcareous deposit films, and to solve the problem of hydrogen embrittlement at high current density. The uniform and compact calcareous deposit films were prepared by pulse electrodeposition process, and their properties were characterized using various surface analytical techniques together with electrochemical methods.

Effect of Negative Substrate Bias Voltage on the Microstructure and Mechanical Properties of Nanostructured Ti-Al-N-O Coatings Prepared by Cathodic Arc Evaporation

  • Heo, Sungbo;Kim, Wang Ryeol;Park, In-Wook
    • 한국표면공학회지
    • /
    • 제54권3호
    • /
    • pp.133-138
    • /
    • 2021
  • Ternary Ti-X-N coatings, where X = Al, Si, Cr, O, etc., have been widely used for machining tools and cutting tools such as inserts, end-mills, and etc. Ti-Al-N-O coatings were deposited onto silicon wafer and WC-Co substrates by a cathodic arc evaporation (CAE) technique at various negative substrate bias voltages. In this study, the influence of substrate bias voltages during deposition on the microstructure and mechanical properties of Ti-Al-N-O coatings were systematically investigated to optimize the CAE deposition condition. Based on results from various analyses, the Ti-Al-N-O coatings prepared at substrate bias voltage of -80 V in the process exhibited excellent mechanical properties with a higher compressive residual stress. The Ti-Al-N-O (-80 V) coating exhibited the highest hardness around 30 GPa and elastic modulus around 303 GPa. The improvement of mechanical properties with optimized bias voltage of -80 V can be explained with the diminution of macroparticles, film densification and residual stress induced by ion bombardment effect. However, the increasing bias voltage above -80 V caused reduction in film deposition rate in the Ti-Al-N-O coatings due to re-sputtering and ion bombardment phenomenon.

Influence of Deposition Temperature on the Film Growth Behavior and Mechanical Properties of Chromium Aluminum Nitride Coatings Prepared by Cathodic Arc Evaporation Technique

  • Heo, Sungbo;Kim, Wang Ryeol
    • 한국표면공학회지
    • /
    • 제54권3호
    • /
    • pp.139-143
    • /
    • 2021
  • Cr-Al-N coatings were deposited onto WC-Co substrates using a cathodic arc evaporation (CAE) system. CAE technique is recognized to be a very useful process for hard coatings because it has many advantages such as high packing density and good adhesion to metallic substrates. In this study, the influence of deposition temperature as a key process parameter on film growth behavior and mechanical properties of Cr-Al-N coatings were systematically investigated and correlated with microstructural changes. From various analyses, the Cr-Al-N coatings prepared at deposition temperature of 450℃ in the CAE process showed excellent mechanical properties with higher deposition rate. The Cr-Al-N coatings with deposition temperature around 450℃ exhibited the highest hardness of about 35 GPa and elastic modulus of 442 GPa. The resistance to elastic strain to failure (H/E ratio) and the index of plastic deformation (H3/E2 ratio) were also good values of 0.079 and 0.221 GPa, respectively, at the deposition temperature of 450℃. Based on the XRD, SEM and TEM analyses, the Cr-Al-N coatings exhibited a dense columnar structure with f.c.c. (Cr,Al)N multi-oriented phases in which crystallites showed irregular shapes (50~100nm in size) with many edge dislocations and lattice mismatches.

선박용 AA5083-H321의 유속에 의한 침식손상 방지를 위한 최적 음극방식전위 규명 (Investigation of Optimum Cathodic Protection Potential to Prevent Erosion with a Flow Rate of AA5083-H321 for Marine Vessels)

  • 정상옥;박일초;김성종
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.288-295
    • /
    • 2020
  • This study investigated the erosion-corrosion characteristics of 5038-H321 aluminum alloy in a natural seawater solution through various electrochemical experiments and flow rate parameters. Cathodic polarization experiments were conducted at flow rates ranging from 4 to 12 knots. Considering the concentration polarization section representing a relatively low current density, the range of the potentiostatic experiment was determined to be -1.6 to -1.0 V. The potentiostatic experiment was conducted at various potentials for 180 minutes in seawater. After the experiment, the corrosion characteristics were evaluated by observing surface morphology and measuring surface roughness. As a result, as the applied potential was lower, the amount of calcareous deposits increased and the roughness tended to increase. On the other hand, it was confirmed that the roughness was larger in the static condition than the flow rate condition due to the influence of the flow velocity. Variations in the chemical composition with flow rate variations were analyzed by energy-dispersive spectroscopy (EDS). In conclusion, the cathodic potential of AA5083-H321 in seawater was determined to be -1.0 V.