• Title/Summary/Keyword: Cathode ratio

Search Result 280, Processing Time 0.026 seconds

Charge/discharge capacity and cycle salability of LiMn$_2$O$_4$cathode by sorts and volume of conductive agent (도전재 종류와 양에 따른 LiMn$_2$O$_4$정극의 충방전 용량 및 Cycle 안정성)

  • 정인성;박계춘;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.275-278
    • /
    • 1997
  • We investigated effectness of sort and volume of conductive agent to charge/discharge capacity of LiMn$_2$O$_4$. LiMn$_2$O$_4$is prepared by reacting stoichiometric mixture of LiOH . $H_2O$ and MnO$_2$(mole ratio 1 : 2) and heating at 80$0^{\circ}C$ for 24h, 36h, 48h, 60h and 72h. All LiMn$_2$O$_4$cathode active materials show spinel structure. Cathode active materials calcined at 80$0^{\circ}C$ for 36h, charge/discharge characteristics and cycle stability have remarkable advantages. Used that super-s-black and 20wt% as conductive agent in LiMn$_2$O$_4$, it is excellent than property of cathode used Acetylene black or mixture of Super-s-black and acetylene black at charge/discharge capacity and cycle stability. Also, specific efficiency of cathode is excellent as over 98% and that of first cycle is excellent as 92%.

  • PDF

Enhancement of Electrochemical Performance of Cathode by Optimizing Laccase-Carbon Nanotubes Layers for Enzymatic Fuel Cells (Laccase-탄소나노튜브 적층을 통한 효소 연료전지의 cathode 성능 향상)

  • Wang, Xue;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.550-556
    • /
    • 2022
  • The performance of enzymatic fuel cells that convert chemical energy contained in various organic molecules such as sugar, alcohol, organic acids, and amino acids into electrical energy is greatly affected by the cathode as well as the anode. This study aimed to develop a laccase-based cathode with high performance. An enzyme composite composed of an laccase, redox mediator, and carbon nanotubes was immobilized on the surface of electrode in multiple layers, and the effect of the number of layers and the presence or absence of carbon nanotubes on electrode performance was investigated. As the number of layers of the enzyme-mediator (Lac-(PVI-Os-dCl)) on the electrode surface increased, the amount of reduction current generated at the electrode increased. The enzyme-carbon nanotube-mediator composite electrode (Lac-SWCNTs-(PVI-Os-dCl)) generated a current 1.7 times greater than that of the Lac-(PVI-Os-dCl). It was found that the largest amount of current (10.1±0.1 µA) was generated in the electrode composed of two layers of Lac-(PVI-Os-dCl) and two layers of Lac-SWCNTs-(PVI-Os-dCl) in the evaluation of electrodes with different ratio of Lac-SWCNTs-(PVI-Os-dCl) and Lac-(PVI-Os-dCl). The maximum power density of the cell using the cathode composed of a single layer of Lac-(PVI-Os-dCl) and the cell using the optimized cathode were 0.46±0.05 and 1.23±0.04 µW/cm2, respectively. In this study, it was demonstrated that the performance of cathode and the enzymatic fuel cell using the same can be improved by optimizing the layers of composites composed of laccase, redox mediator, and carbon nanotubes on the electrode surface.

Learning Data Model Definition and Machine Learning Analysis for Data-Based Li-Ion Battery Performance Prediction (데이터 기반 리튬 이온 배터리 성능 예측을 위한 학습 데이터 모델 정의 및 기계학습 분석 )

  • Byoungwook Kim;Ji Su Park;Hong-Jun Jang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.133-140
    • /
    • 2023
  • The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.

The Characteristics of Titanium Oxide Films Deposited by the Nozzle-type HCP RT-MOCVD (노즐 형태 HCP RT-MOCVD에 의해 증착된 티타늄 산화막 특성)

  • Jung, Il-hyun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.194-200
    • /
    • 2006
  • Titanium oxide films were deposited by the nozzle type HCP RT-MOCVD for the application of metal-oxide films. In the case of TTNB, after depositing films, films must be annealed at a proper temperature, but in the case of titanium ethoxide, titanium oxide films could be directly deposited by titanium ethoxide without general annealing. We could confirm that ratio of O to Ti in the films was about 2 : 1 at RF-power of 240 watt, distance between cathode and substrate of 3 cm, deposition time of 20 min, and ratio of Ar to $O_2$ of 1 : 1. Therefore, we could obtain the titanium oxide film deposited by the nozzle type HCP RT-MOCVD without an annealing process and could apply in the metal-oxide deposition process at a low temperature.

A Study on Optimization of Manufacturing Condition for LiNi1/3Mn1/3Co1/3O2-based Cathode Electrode (LiNi1/3Mn1/3Co1/3O2계 정극활물질을 적용한 전극 제조조건 최적화 연구)

  • Kim Hyun-Soo;Kim Sung-Il;Lee Chang-Woo;Moon Seong-In;Kim Woo-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 2006
  • A fabrication condition of the cathode electrode was optimized in a lithium secondary battery. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ powders were used as a cathode material. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$/Li cells were prepared with a certain formulation and their cycleability and rate-capability were evaluated. Optimum electrode composition simulated from the evaluated value was 86.3: 5.6: 8.1 in mass $\%$ of active material: binder: conducting material. Discharge capacity decreased markedly as the press ratio exceeded $30\%$ during preparation of the electrode. Discharge performance at a high current rate deteriorated abruptly as the electrode thickness was over $120{\mu}m$.

A Study on the Natural Sex Ratio and Fertility of Galvanized Boar Semen (돼지의 자연성비와 정자의 전기분이에 의한 수태성적에 관한 연구)

  • 이용빈;오봉국;권종국;서국성;정영철;오성종
    • Korean Journal of Animal Reproduction
    • /
    • v.3 no.1
    • /
    • pp.56-60
    • /
    • 1979
  • This study was carried out to find the difference between the naturaly born sex rtio among 1,242 head of pigs(120 litters) at Swine Farm, Cheil Sugar Co. and B-body a, pp.arance from their semen, and to find the conception rates which were inseminated to 40 sows with sperm from the anode and cathode after electrophoresis of boar semen. In order to the electrophoretic separation, the semen was placed into the platimum loop electrodes(105 cc) at room temperature for 30 minutes with D.C. 3V. and 350${\mu}$A. constant. The sperm fluorescent staining method was performed in accordance with Bhattacharya's(1970) method. The spermatozoa were observed through a Olympus Vanox microscope(made in Japan) using exciter filter with I heat barrier HPO 120. The results obtained were summarized as follows: 1. The natural sex ratio of 1,242 piglets(120 litters) which were born at Swine Farm, Cheil Sugar Co. was 50%, and B-body a, pp.arance of its boar semen were 49.24%. 2. With electrophoretic separation, the anode and cathode attracted 65.5${\pm}$5.03% and 29.89${\pm}$4.29% of B-body bearing sperm, respectively. 3. After electrophoresis of boar sperm, they were inseminated to 40 sows with sperm from anode and cathode. The conception rate was 92.5%.

  • PDF

A Study on Highly Efficient Organic Electroluminescent Devices

  • Park, Jae-Hoon;Lee, Yong-Soo;Choi, Jong-Sun
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2003
  • In order to improve the device performances of organic electroluminescent devices (OELDs), the efficiency of carrier injections into the organic layers from electrodes and the balance of injected carrier densities in the emission region are critical factors. Especially, energy barriers, which exist at the interfaces between electrodes and organic layers, interrupt carrier injections, which lead to unbalanced carrier densities. In this study, ${\alpha}-septithiophene$ (${\alpha}$-7T), as a buffer layer, and composite cathode composed of Al and CsF were formed to improve hole and electron injections, respectively. The orientations of ${\alpha}$-7T molecules were adjusted using the simple rubbing method and the mass ratio of CsF was varied from 1 to 10 wt%. Upon investigation of we believe that the 3 wt% mass ratio of CsF and the horizontal orientation of ${\alpha}$-7T molecules are the optimized conditions for achieving better the performance of OELDs. Device with the horizontally oriented 20 nm thick ${\alpha}$-7T layer and composite cathode shows a turn-on voltage of 7V and luminance of 172 cd/$m^2$ at 4 mA/$cm^2$.

Recovery of Rare Metals from the Waste Secondary Lithium Ion Battery Cathode Active Materials Using Lactic Acid and Oxalic acid (젖산과 옥살산을 이용한 폐 이차 리튬이온 전지 양극 활물질로부터 희유금속들의 회수)

  • Kim, Younjung;Han, Ji Sun;Choi, Sik Young;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.446-452
    • /
    • 2019
  • We have developed a method that can leach Co, Mn, and Ni in the cathode active material safely using lactic acid. When cathode active material was leached by lactic acid, lactic acid showed the highest efficiency at 2 N than 1 N and above 4 N concentration. When the cathode active material was added incrementally into the solution of lactic acid, the maximum solubility was 30 g/L at 2 N concentration. Oxalic acid was added in the solution of lactic acid and it showed that rare metals represent the most economical recovery efficiency at 4 g/L. Based on this study, it was found that the optimal condition for recovery of rare metals from cathode active material is oxalic acid : cathode active material = 7 : 1 as a ratio of weight. In addition, it was observed that the precipitate produced by oxalic acid is a polynuclear crystalline material bonded with 3 components of Co, Ni, and Mn.

Electrolytic Deposition of Metal Ions Using A Liquid Cadmium Cathode

  • Shim, Joon-Bo;Ahn, Byung-Gil;Kwon, Sang-Woon;Kim, Eung-Ho;Yoo, Jae-Hyung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.337-337
    • /
    • 2004
  • As one of researches for the P & T purposes, a basic experiment on the recovery of actinide elements from the mixture with rare earth elements by means of electrorefining using a liquid cadmium cathode in the LiCl-KC1 eutectic melt was carried out. In order to examine the behaviors of electrodeposition of metal ions on a liquid electrode, recovery experiments of rare earth metals resulting from forming electrodeposits were performed by a galvanostatic electrolysis method at various current densities. A cyclic voltammetric technique was applied to determine reduction-oxidation potential of each metal element in the melt and to detect the changes of the multi component melt composition for on-line monitoring. Also, a collaboration study with RIAR was completed to test the preliminary feasibility on a recovery of actinide elements from the mixture with rare earth elements using a liquid cadmium cathode and actinide metals. Experimental results showed that the ratio of actinides to rare earths, 9: 0.5∼1 led to the rare earth content of about 5∼10 wt% in the deposit.

  • PDF

Fabrication of Anode-Supported SOFC Single Cells via Tape-Casting of Thin Tapes and Co-Firing (박막 테이프캐스팅과 동시소성에 의한 연료극 지지형 SOFC 단전지 제조)

  • Moon, Hwan;Kim, Sun-Dong;Hyun, Sang-Hoon;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.788-797
    • /
    • 2006
  • An anode-supported SOFC single cell having $5{\mu}m$ thin electrolyte was fabricated cost-effectively by tape casting, laminating, and co-filing of anode (NiO-YSZ), cathode (LSM-YSZ), and electrolyte (YSZ) components. The optimal slurry compositions of the green tapes for SOFC components were determined by an analysis of the mean diameter, the slurry viscosity, the tensile strength/strain of the green tapes, and their green microstructures. The single cells with a dense electrolyte and porous electrodes could be co-fired successfully at $1325\sim1350^{\circ}C$ by controlling the contents of pore former and the ratio of coarse YSZ and fine YSZ in the anode and the cathode. The single cell co-fired at $1350^{\circ}C$ showed $100.2mWcm^{-2}$ of maximum power density at $800^{\circ}C$ but it was impossible to apply it to operate at low temperature because of low performance and high ASR, which were attributed to formation of the secondary phases in the cathode and the interface between the electrolyte and the cathode.