• Title/Summary/Keyword: Cathode channel

Search Result 95, Processing Time 0.029 seconds

Optimization of Cathode Flow Field Design for a PEMFC with Six Sigma Technique (Six sigma 기법을 이용한 PEMFC Cathode 유로설계 최적화)

  • Kim, Sun-Hoe
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.492-498
    • /
    • 2009
  • Six sigma methode was applied for optimization of flow field design of a proton exchange membrane fuel cell (PEMFC). The optimization between number of channel and channel/rib width was suggested in this paper with six sigma method. With the help of six sigma design of experiment (DOE) the number of experiments may be reduced dramatically. The fuel cell channel design optimization with results of these experiments with a 100 $cm^2$ serpentine flow field indicates a optimization data for a given constant operating conditions.

Experiments on PEMFC performance enhancement by pulsating cathode flow

  • Han, Hun-Sik;Kim, Ki-Woong;Kim, Yun-Ho;Kim, Seo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.542-545
    • /
    • 2008
  • Experiments have been performed to investigate effects of pulsating cathode flow on a 10-cell proton exchange membrane fuel cell (PEMFC) stack. For all the experiments, the flow rate, temperature and relative humidity of hydrogen at the anode inlet are fixed. The effects of the pulsating frequency, amplitude and flow rate at the cathode inlet on performance of 10-cell PEMFC are examined. The polarization and power curves show that the power output and limiting current is substantially increased when the pulsating component is added to cathode flow channel. The maximum power output increases by up to 38% and enhancement of the overall performance is more pronounced at lower flow rate region.

  • PDF

Effective structure of electron injection from ITO bottom cathode for inverted OLED

  • Chu, Ta-Ya;Chen, Szu-Yi;Chen, Jenn-Fang;Chen, Chin H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.972-974
    • /
    • 2005
  • For display drivers employ typically a-Si n-channel field effect transistors, they require an inverted OLED structure with a cathode as the bottom contact. ITO is regarded as the bottom cathode and can be applied to large size AM-OLED and transparent inverted OLEDs. We report the effective structure to improve the efficiency of electron injection from ITO cathode to $Alq_3$. We report the effective structure to improve the efficiency of electron injection from ITO cathode to Alq3 and studied the current density-voltage characteristics of trilayer ($Alq_3-LiF-Al$), LiF and Mg inserted between ITO and $Alq_3$, respectively. We discovered that 1 nm Mg afforded the highest efficiency.

  • PDF

EXPERIMENTAL APPROACHES FOR WATER DISCHARGE CHARACTERISTICS IN PEMFC USING NEUTRON IMAGING TECHNIQUE AT CONRAD, HMI

  • Kim, Tae-Joo;Kim, Jong-Rok;Sim, Cheul-Muu;Lee, Sung-Ho;Son, Young-Jin;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.135-142
    • /
    • 2009
  • In this investigation, we prepared a 1 and 3-parallel serpentine single PEMFC, which has an active area of $100\;cm^2$ and a flow channel cross section of $1{\times}1mm$. Distribution and transport of water in a non-operating PEMFC were observed by varying flow types and the flow rates (250, 400, and 850 cc/min). This investigation was performed at the neutron imaging facility at the CO1d Neutron RAdiography facility (CONRAD), HMI, Germany of which the collimation ratio and neutron fluence rate are 250, $1{\times}10^{6}n/s/cm^2$, respectively. The neutron image was continuously recorded by a scintillator and lens-CCD coupled detector system every 10 seconds. It has been observed that although the distilled water was supplied into the cathode channel only, the neutron image showed a water movement from the cathode to the anode channel. The water at the cathode channel was completely discharged as soon as the pressurized air was supplied. But the water at the anode channel was not easily removed by the pressurized air except for the 3-parallel serpentine type with 850cc/min of air flow rate. Moreover, the water at the MEA wasn't removed for any of the cases.

Coating of LSM Ink in the Layered Planar Type SOFC (적층 평판형 SOFC에서 LSM 전극 코팅)

  • Lee, Sung-Il;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.552-557
    • /
    • 2012
  • In this study, we have coated the inner surface of YSZ channel using LSM powder ink through depressurization process for making the cathode of a stacked planar-type SOFC module. To coat the surface of YSZ channel uniformly, we tried to find the optimum manufacturing condition for LSM ink. We used four different dispersants (BYK series) and two different solvents (ethanol and DMF) to make the LSM ink. It was revealed that the ink made with the ethanol solvent and the BYK-111 dispersant has the lowest viscosity, relatively low contact angle and most excellent dispersibility. After depressurizing a chamber filled with LSM ink and sintered YSZ channel, we have found that the YSZ channel was uniformly coated with LSM cathode. The LSM ink with 25 vol% BYK-111 showed the most uniform coating.

Numerical Analysis on Performance Characteristics of PEMFC with Parallel and Interdigitated Flow Channel (평행류와 Interdigitated 유로를 가진 교분자 전해질 연료전지(PEMFC)의 성능특성에 대한 수치해석)

  • Lee, Pil-Hyong;Cho, Son-Ah;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.170-177
    • /
    • 2006
  • Optimum design of flow channel in the separation plate of Proton Exchange Membrane Fuel Cell is very prerequisite to reduce concentration over potential at high current region and remove the water generated in cathode effectively. In this paper, fully 3 dimensional computational model which solves anode and cathode flow fields simultaneously is developed in order to compare the performance of fuel cell with parallel and interdigitated flow channels. Oxygen and water concentration and pressure drop are calculated and i-V performance characteristics are compared between flows with two flow channels. Results show that performance of fuel cell with interdigitated flow channel is hi민or than that with parallel flow channel at high current region because hydrogen and oxygen in interdigitated flow channel are transported to catalyst layer effectively due to strong convective transport through gas diffusion layer but pressure drop is larger than that in parallel flow channel. Therefore Trade-off between power gain and pressure loss should be considered in design of fuel cell with interdigitated flow channel.

Optimization of resolution and color reproduction for color CRT monitor by control of contrast and brightness levels (칼라 CRT 모니터의 화면밝기와 명암대비 레벨 조절에 의한 분해능과 색재현의 최적화)

  • 김태희;이윤우;조현모;송재봉;이인원;박승옥
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.379-385
    • /
    • 1999
  • The characteristics of image quality of a color CRT (cathode ray tube) monitor are studied by changing the contrast and brightness levels. The resolution is assessed by SQRI (square root integral) measured at 9 different combinations of the contrast and brightness levels. The chromaticity coordinates and luminances of red-green-blue channels as a function of the digital value are measured at these combinations and the relationships among the constant-channel chromaticity, color gamut, maximum luminance of a white point with the channel independence are analyzed. From the results, the optimized combination of levels is obtained.

  • PDF

Effect of Polyethlene Glycols on the Electroosmosis Through Skin

  • Lee, Seung-Yeon;Kim, Su-Youn;Youe, Jee-Sun;Min, Hye-Ran;Han, Jeong-Jin;Oh, Seaung-Youl
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.233.3-234
    • /
    • 2003
  • Electroosmotic flux during iontophoresis originates due to the net negative charge of the current passing channel (pores) in skin at physiological pH (pH 7.4). Thus, the channel is permselective to cations, and this causes the convective solvent flow, from anode to cathode direction. This solvent flow facilitates the flux of cations (from anode), inhibits that of anions (from cathode), and enables the enhanced transport of neutral, polar solutes. In this work, we have investigated the effect of a series of polyethylene glycols (PEGs) with different molecular weights on the electroosmtic flow to get more detail understanding of this phenomena. (omitted)

  • PDF

An Analytical Model for the Threshold Voltage of Short-Channel Double-Material-Gate (DMG) MOSFETs with a Strained-Silicon (s-Si) Channel on Silicon-Germanium (SiGe) Substrates

  • Bhushan, Shiv;Sarangi, Santunu;Gopi, Krishna Saramekala;Santra, Abirmoya;Dubey, Sarvesh;Tiwari, Pramod Kumar
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.367-380
    • /
    • 2013
  • In this paper, an analytical threshold voltage model is developed for a short-channel double-material-gate (DMG) strained-silicon (s-Si) on silicon-germanium ($Si_{1-X}Ge_X$) MOSFET structure. The proposed threshold voltage model is based on the so called virtual-cathode potential formulation. The virtual-cathode potential is taken as minimum channel potential along the transverse direction of the channel and is derived from two-dimensional (2D) potential distribution of channel region. The 2D channel potential is formulated by solving the 2D Poisson's equation with suitable boundary conditions in both the strained-Si layer and relaxed $Si_{1-X}Ge_X$ layer. The effects of a number of device parameters like the Ge mole fraction, Si film thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been analyzed for gate-length ratio and amount of strain variations. The validity of the present 2D analytical model is verified with ATLAS$^{TM}$, a 2D device simulator from Silvaco Inc.