Journal of the Korean Data and Information Science Society
/
제21권6호
/
pp.1353-1359
/
2010
Basic objective in cluster analysis is to discover natural groupings of items. In general, clustering is conducted based on some similarity (or dissimilarity) matrix or the original input data. Various measures of similarities between objects are developed. In this paper, we consider a clustering of huge categorical real data set which shows the aspects of time-location-activity of Korean people. Some useful similarity measure for the data set, are developed and adopted for the categorical variables. Hierarchical and nonhierarchical clustering method are applied for the considered data set which is huge and consists of many categorical variables.
본 연구는 소비자의 브랜드편익(상징적 vs. 기능적)이 브랜드확장에 미치는 영향을 살펴보는 것으로, 특히 상표신념의 매개효과와 범주적 유사성의 조절효과를 살펴보았다. 이를 위하여 초점집단면접과 프리테스트를 통해 2개의 제품범주(시계와 가방)에서 각각 2개의 모브랜드(롤렉스 vs. 카시오, 프라다 vs. 코치)와 2개의 확장제품(팔찌, 구두)을 자극물로 선정하고, 구글(www.google.com)의 설문조사 사이트를 통해 전국의 성인남녀를 대상으로 196개의 표본자료를 수집하여 부적절한 응답지를 제외한 193개의 응답지로 최종 회귀분석을 하였다. 연구결과 소비자가 추구하는 브랜드편익에 따라 브랜드확장에 대한 태도가 달라질 수 있다는 선행연구의 결과를 재확인하였으며, 이는 상표신념에 의해 완전 매개된다는 점도 확인하였다. 또한 본 연구에서는 소비자의 브랜드편익이 브랜드 확장태도에 미치는 영향이 범주적 유사성에 의해 조절될 수 있음도 확인하였다. 이러한 연구결과는 상표신념의 구축이 브랜드확장 전략의 하나로 충분히 사용될 수 있다는 이론적 시사점과 범주적 유사성을 고려한 브랜드커뮤니케이션 전략이 브랜드 편익에 따라 달라져야 한다는 실무적 시사점을 제공한다. 또 본 연구를 활용하여, 브랜드 적합성 또는 충성도 등 다양한 조절요인과 매개요인과의 관계설정도 가능하리라 본다.
We study clustering algorithm for sequences of categorical values. Clustering is a data mining problem that has received significant attention by the database community. Traditional clustering algorithms deal with numerical or categorical data points. However, there exist many important databases that store categorical data sequences. In this paper, we introduce new similarity measure and develop a hierarchical clustering algorithm. An experimental section shows performance of the proposed approach.
The enormous increase of data with the development of the information technology make internet users to be hard to find suitable information tailored to their needs. In the face of changing environment, the information filtering method, which provide sorted-out information to users, is becoming important. The data on the internet exists as various type. However, similarity calculation algorithm frequently used in existing collaborative filtering method is tend to be suitable to the numeric data. In addition, in the case of the categorical data, it shows the extreme similarity like Boolean Algebra. In this paper, We get the similarity in SNS user's information which consist of the mixed data using the Gower's similarity coefficient. And we suggest a method that is softer than radical expression such as 0 or 1 in categorical data. The clustering method using this algorithm can be utilized in SNS or various recommendation system.
We study clustering algorithm for sequences of categorical values. Clustering is a data mining problem that has received significant attention by the database community. Traditional clustering algorlthms deal with numerical or categorical data points. However, there exist many important databases that store categorical data sequences. In this paper we introduce new similarity measure and develope a hierarchical clustering algorithm. An experimental section shows performance of the proposed approach.
Journal of the Korean Data and Information Science Society
/
제7권2호
/
pp.219-226
/
1996
Basic objective in cluster analysis is to discover natural groupings of items or variables. In general, variable clustering was conducted based on some similarity measures between variables which have binary characteristics. We propose a variable clustering method when variables have more categories ordered in some sense. We also consider some measures of association as a similarity between variables. Numerical example is included.
Journal of the Korean Data and Information Science Society
/
제18권2호
/
pp.481-488
/
2007
The k-means algorithm is well known for its efficiency in clustering large data sets. However, working only on numeric values prohibits it from being used to cluster real world data containing categorical values. The k-modes algorithm is to extend the k-means paradigm to categorical domains. The algorithm requires a pre-setting or random selection of initial points (modes) of the clusters. This paper improved the problem of k-modes algorithm, using the Max-Min method that is a kind of methods to decide initial values in k-means algorithm. we introduce new similarity measures to deal with using the categorical data for clustering. We show that the mushroom data sets and soybean data sets tested with the proposed algorithm has shown a good performance for the two aspects(accuracy, run time).
데이터의 군집을 찾아내는 문제는 패턴 인식, 이미지 처리, 시장 조사 등 많은 응용 분야에서 널리 사용되고 있다. 군집의 질을 결정하는 핵심 요소로는 유사 측도, 차원의 개수 등이 있다. 유사 측도는 데이터의 특성을 반영하여 다르게 정의되어야 하는데, 대부분 기존의 연구들은 데이터를 특징 지어주는 속성이 수치형으로 주어진 경우에 국한되어 있었다. 속성이 범주형으로 주어진 경우도 실생활에 많이 존재하지만, 범주형 변수에 대한 속성값의 유사성은 값의 순서가 고유하게 정해지지 않아서 정의하기 어렵다. 이에 더하여, 고차원 데이터에 대해서는 데이터 점들이 희박하게 위치하여 가까운 점과 먼 점간의 차이가 거의 없고, 군집화 결과가 좋지 않을 수 있다. 이 문제를 해결하기 위해 부분 차원 군집화 방법이 제안되어 왔다. 부분 차원 군집화 방법은 각 군집을 발견하기에 적합한 부분 차원을 선택하면서 군집화를 수행하는 방법이다. 본 논문에서는 범주형 속성으로 특징지어진 고차원 데이터를 부분 차원 군집화하기 위한 새로운 유사 측도를 제안한다. 유사 측도는 각 군집은 다른 군집과 구별되는 특정 정보를 잘 표현할 수 있어야 한다는 기본적인 가정 하에 속성들 사이의 상관성을 반영하여 정의되었다. 이들 모두를 반영한 유사측도는 기존에 존재하지 않았다는 점에서 본 연구는 의미가 있다. 실제 데이터 집합을 군집화하는 실험을 통해 제안하는 방법이 다른 군집화 방법보다 저차원 데이터와 고차원 데이터 모두에 대해 좀 더 정확한 군집 결과를 얻을 수 있음을 보였다.
Clustering in data mining is a discovery process that groups a set of data such that the intracluster similarity is maximized and intercluster similarity is minimized. The discovered clusters from clustering process are used to explain the characteristics of the data distribution. In this paper we propose a new methodology for clustering related transactions with categorical attributes. Our approach starts with transforming general relational databases into a transactional databases. We make use of inter-dimensional association rules for composing hypergraph edges, and a hypergraph partitioning algorithm for clustering the values of attributes. The clusters of the values of attributes are used to find the clusters of transactions. The suggested procedure can enhance the interpretation of resulting clusters with allocated attribute values.
최근에는 단백질 시퀀스, 소매점 거래 데이터, 웹 로그 등과 같은 상업적이거나 과학적인 데이터의 폭발적인 증가를 볼 수 있다. 이런 데이터들은 순서적인 면을 가지고 있는 시퀀스 데이터들이다. 본 논문에서는 이런 시퀀스 데이터들을 분류하는 문제를 다룬다. 분류 기법 으로는 의사결정 나무나 베이지안 분류기, K-NN방법 등 석러 종류가 있는데, 본 연구에서는 또-U방법을 이용하여 시퀀스들을 분류한다. 또한, 시퀀스들간의 유사도를 구하기 위한 새로운 계산 방법과 효율적인 계산 방법도 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.