• 제목/요약/키워드: Categorical Information

검색결과 219건 처리시간 0.031초

On the clustering of huge categorical data

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1353-1359
    • /
    • 2010
  • Basic objective in cluster analysis is to discover natural groupings of items. In general, clustering is conducted based on some similarity (or dissimilarity) matrix or the original input data. Various measures of similarities between objects are developed. In this paper, we consider a clustering of huge categorical real data set which shows the aspects of time-location-activity of Korean people. Some useful similarity measure for the data set, are developed and adopted for the categorical variables. Hierarchical and nonhierarchical clustering method are applied for the considered data set which is huge and consists of many categorical variables.

Study on the Categorical Structure Standardization for Representation of 3D Human Body Position System

  • Choi, Byung-Kwan;Choi, Eun-A;Nam, Moon-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제18권4호
    • /
    • pp.260-266
    • /
    • 2020
  • This study presents the categorical structure for ther epresentation of a 3D human body position system in the WD stage after NP approval by the International Organization for Standardization (ISO), analyzes the needs of electronic medical record users and establishes future implementation plans for expanding its use in Korea. Research was conducted on the needs of doctors, nurses, health and medical information managers, and radiology departments, which are the main stakeholders of electronic medical records. The overall requirements for electronic medical records were derived from the results, and the requirements for each stage of use of electronic medical records were analyzed. Based on the results of the study, the study proposes plans to expand the use of the categorical structure for the representation of the 3D human body position system, and also aims to establish a standard system for health and medical terminology in Korea and contribute to the development of health and medical information standards through international standardization.

Initial Mode Decision Method for Clustering in Categorical Data

  • Yang, Soon-Cheol;Kang, Hyung-Chang;Kim, Chul-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.481-488
    • /
    • 2007
  • The k-means algorithm is well known for its efficiency in clustering large data sets. However, working only on numeric values prohibits it from being used to cluster real world data containing categorical values. The k-modes algorithm is to extend the k-means paradigm to categorical domains. The algorithm requires a pre-setting or random selection of initial points (modes) of the clusters. This paper improved the problem of k-modes algorithm, using the Max-Min method that is a kind of methods to decide initial values in k-means algorithm. we introduce new similarity measures to deal with using the categorical data for clustering. We show that the mushroom data sets and soybean data sets tested with the proposed algorithm has shown a good performance for the two aspects(accuracy, run time).

  • PDF

Categorization and production in lexical pitch accent contrasts of North Kyungsang Korean

  • Kim, Jungsun
    • 말소리와 음성과학
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2018
  • Categorical production in language processing helps speakers to produce phonemic contrasts. This categorization and production is utilized for the production-based and imitation-based approach in the present study. Contrastive signals in speakers' speech reflect the shapes of boundaries with categorical characteristics. Signals that provide information about lexical pitch accent contrasts can introduce categorical distinctions for productive and cognitive selection. This experiment was conducted with nine North Kyungsang speakers for a production task and nine North Kyungsang speakers for an imitation task. The first finding of the present study is the rigidity of categorical production, which controls the boundaries of lexical pitch accent contrasts. The categorization of North Kyungsang speakers' production allows them to classify minimal pitch accent contrasts. The categorical production in imitation appeared in two clusters, representing two meaningful contrasts. The second finding of the present study is that there are individual differences in speakers' production and imitation responses. The distinctive performances of individual speakers showed a variety of curves. For the HL-LH patterns, the categorical production tended to be highly distinctive as compared to the other pitch accent patterns (HH-HL and HH-LH), showing that there are more continuous curves than categorical curves. Finally, the present study shows that, for North Kyungsang speakers, imitative production is the core type of categorical production for determining the existence of the lexical pitch accent system. However, several questions remain for defining that categorical production, which leads to ideas for future research.

Mutual Information and Redundancy for Categorical Data

  • Hong, Chong-Sun;Kim, Beom-Jun
    • Communications for Statistical Applications and Methods
    • /
    • 제13권2호
    • /
    • pp.297-307
    • /
    • 2006
  • Most methods for describing the relationship among random variables require specific probability distributions and some assumptions of random variables. The mutual information based on the entropy to measure the dependency among random variables does not need any specific assumptions. And the redundancy which is a analogous version of the mutual information was also proposed. In this paper, the redundancy and mutual information are explored to multi-dimensional categorical data. It is found that the redundancy for categorical data could be expressed as the function of the generalized likelihood ratio statistic under several kinds of independent log-linear models, so that the redundancy could also be used to analyze contingency tables. Whereas the generalized likelihood ratio statistic to test the goodness-of-fit of the log-linear models is sensitive to the sample size, the redundancy for categorical data does not depend on sample size but its cell probabilities itself.

An Efficient Indexing Structure for Multidimensional Categorical Range Aggregation Query

  • Yang, Jian;Zhao, Chongchong;Li, Chao;Xing, Chunxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.597-618
    • /
    • 2019
  • Categorical range aggregation, which is conceptually equivalent to running a range aggregation query separately on multiple datasets, returns the query result on each dataset. The challenge is when the number of dataset is as large as hundreds or thousands, it takes a lot of computation time and I/O. In previous work, only a single dimension of the range restriction has been solved, and in practice, more applications are being used to calculate multiple range restriction statistics. We proposed MCRI-Tree, an index structure designed to solve multi-dimensional categorical range aggregation queries, which can utilize main memory to maximize the efficiency of CRA queries. Specifically, the MCRI-Tree answers any query in $O(nk^{n-1})$ I/Os (where n is the number of dimensions, and k denotes the maximum number of pages covered in one dimension among all the n dimensions during a query). The practical efficiency of our technique is demonstrated with extensive experiments.

Complex Segregation Analysis of Categorical Traits in Farm Animals: Comparison of Linear and Threshold Models

  • Kadarmideen, Haja N.;Ilahi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권8호
    • /
    • pp.1088-1097
    • /
    • 2005
  • Main objectives of this study were to investigate accuracy, bias and power of linear and threshold model segregation analysis methods for detection of major genes in categorical traits in farm animals. Maximum Likelihood Linear Model (MLLM), Bayesian Linear Model (BALM) and Bayesian Threshold Model (BATM) were applied to simulated data on normal, categorical and binary scales as well as to disease data in pigs. Simulated data on the underlying normally distributed liability (NDL) were used to create categorical and binary data. MLLM method was applied to data on all scales (Normal, categorical and binary) and BATM method was developed and applied only to binary data. The MLLM analyses underestimated parameters for binary as well as categorical traits compared to normal traits; with the bias being very severe for binary traits. The accuracy of major gene and polygene parameter estimates was also very low for binary data compared with those for categorical data; the later gave results similar to normal data. When disease incidence (on binary scale) is close to 50%, segregation analysis has more accuracy and lesser bias, compared to diseases with rare incidences. NDL data were always better than categorical data. Under the MLLM method, the test statistics for categorical and binary data were consistently unusually very high (while the opposite is expected due to loss of information in categorical data), indicating high false discovery rates of major genes if linear models are applied to categorical traits. With Bayesian segregation analysis, 95% highest probability density regions of major gene variances were checked if they included the value of zero (boundary parameter); by nature of this difference between likelihood and Bayesian approaches, the Bayesian methods are likely to be more reliable for categorical data. The BATM segregation analysis of binary data also showed a significant advantage over MLLM in terms of higher accuracy. Based on the results, threshold models are recommended when the trait distributions are discontinuous. Further, segregation analysis could be used in an initial scan of the data for evidence of major genes before embarking on molecular genome mapping.

Two-stage imputation method to handle missing data for categorical response variable

  • Jong-Min Kim;Kee-Jae Lee;Seung-Joo Lee
    • Communications for Statistical Applications and Methods
    • /
    • 제30권6호
    • /
    • pp.577-587
    • /
    • 2023
  • Conventional categorical data imputation techniques, such as mode imputation, often encounter issues related to overestimation. If the variable has too many categories, multinomial logistic regression imputation method may be impossible due to computational limitations. To rectify these limitations, we propose a two-stage imputation method. During the first stage, we utilize the Boruta variable selection method on the complete dataset to identify significant variables for the target categorical variable. Then, in the second stage, we use the important variables for the target categorical variable for logistic regression to impute missing data in binary variables, polytomous regression to impute missing data in categorical variables, and predictive mean matching to impute missing data in quantitative variables. Through analysis of both asymmetric and non-normal simulated and real data, we demonstrate that the two-stage imputation method outperforms imputation methods lacking variable selection, as evidenced by accuracy measures. During the analysis of real survey data, we also demonstrate that our suggested two-stage imputation method surpasses the current imputation approach in terms of accuracy.

Categorical Data Analysis by Means of Echelon Analysis with Spatial Scan Statistics

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.83-94
    • /
    • 2004
  • In this study we analyze categorical data by means of spatial statistics and echelon analysis. To do this, we first determine the hierarchical structure of a given contingency table by using echelon dendrogram then, we detect candidates of hotspots given as the top echelon in the dendrogram. Next, we evaluate spatial scan statistics for the zones of significantly high or low rates based on the likelihood ratio. Finally, we detect hotspots of any size and shape based on spatial scan statistics.

  • PDF

고차원 범주형 자료를 위한 비지도 연관성 기반 범주형 변수 선택 방법 (Association-based Unsupervised Feature Selection for High-dimensional Categorical Data)

  • 이창기;정욱
    • 품질경영학회지
    • /
    • 제47권3호
    • /
    • pp.537-552
    • /
    • 2019
  • Purpose: The development of information technology makes it easy to utilize high-dimensional categorical data. In this regard, the purpose of this study is to propose a novel method to select the proper categorical variables in high-dimensional categorical data. Methods: The proposed feature selection method consists of three steps: (1) The first step defines the goodness-to-pick measure. In this paper, a categorical variable is relevant if it has relationships among other variables. According to the above definition of relevant variables, the goodness-to-pick measure calculates the normalized conditional entropy with other variables. (2) The second step finds the relevant feature subset from the original variables set. This step decides whether a variable is relevant or not. (3) The third step eliminates redundancy variables from the relevant feature subset. Results: Our experimental results showed that the proposed feature selection method generally yielded better classification performance than without feature selection in high-dimensional categorical data, especially as the number of irrelevant categorical variables increase. Besides, as the number of irrelevant categorical variables that have imbalanced categorical values is increasing, the difference in accuracy between the proposed method and the existing methods being compared increases. Conclusion: According to experimental results, we confirmed that the proposed method makes it possible to consistently produce high classification accuracy rates in high-dimensional categorical data. Therefore, the proposed method is promising to be used effectively in high-dimensional situation.