• 제목/요약/키워드: Catecholase activity

검색결과 4건 처리시간 0.019초

Tetrameric Self-Assembly of a Cu(II) Complex Containing Schiff-Base Ligand and Its Unusually High Catecholase-like Activity

  • Sarkar, Shuranjan;Lee, Woo Ram;Hong, Chang Seop;Lee, Hong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2731-2736
    • /
    • 2013
  • We report a new tetrameric supramolecular Cu(II) complex ($Cu_4L_4$ = tetrakis(N,N'-bis(salicylidene)-2,2'-ethylenedianiline)Copper(II)) with a Schiff-base ligand ($H_2L$ = N,N'-bis (salicylaldimine)-1,2-ethylenediamine) containing two N,O-bidentate chelate groups. Though the copper sites of $Cu_4L_4$ are non-coupled, the complex exhibits a unsually high catecholase-like activity ($k_{cat}=935h^{-1}$) when the $Cu_4L_4$ solution is treated with 3,5-di-tert-butylcatechol (3,5-DTBC) at basic condition in the presence of air. Combined information obtained from UV-VIS and EPR measurements could lead the suggestion of the reaction pathway in which the substrate may bind to Cu(II) ions by anti-anti didentate bridging mode.

한국산 재래종 담배잎에서 정제한 Polyphenol Oxidase의 성상에 관한 연구 (Some Properties of Polyphenol Oxidase Purified from Korean Native Tobacco Variety Leaves)

  • 박수선;김안근;박금영
    • 생약학회지
    • /
    • 제20권2호
    • /
    • pp.101-109
    • /
    • 1989
  • Purification of polyphenol oxidase(PPO) from Korean native tobacco variety leaves was carried out through the procedure of acetone preciptation, ammonium sulfate fractionation, and Sephadex G-150 gel filtration, resulting in a 84-fold increase in specific activity. The enzyme was stable in a range of pH 7.5 to 8.0 with an optimum of pH 7.5. The optimum temperature for the enzymic reaction was about $60^{\circ}$. It was thermostable with a half-life equal to 20 min at $70^{\circ}$. Km values for (+)-catechin and pyrogallol were $1.6{\times}10^{-3}$ and $0.5{\times}10^{-3}M$, respectively. It possesses high catecholase activity but little or no cresolase activity. Lineweaver-Burk analysis of inhibition data revealed that the inhibition of (+)-catechin oxidation by potassium cyanide, 4-nitrocatechol, cystein and 2-mercaptoethanol was competitive with Ki values of $1.1{\times}10^{-6}$, $1.8{\times}10^{-6}$, $8.9{\times}10^{-6}$ and $1.3{\times}10^{-5}$, respectively.

  • PDF

Substrate Construes the Copper and Nickel Ions Impacts on the Mushroom Tyrosinase Activities

  • Gheibi, N.;Saboury, A.A.;Haghbeen, K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.642-648
    • /
    • 2006
  • Mushroom tyrosinase (MT) structural changes in the presence of $Cu ^{2+}$ and $Ni ^{2+}$ were studied separately. Far-UV CD spectra of the incubated MT with the either of the metal ions indicated reduction of the well-ordered secondary structure of the enzyme. Increasing in the maximum fluorescence emission of anilinonaphthalene-8-sulfonic acid (ANS) was also revealing partial unfolding caused by the conformational changes in the tertiary structure of MT. Thermodynamic studies on the chemical denaturation of MT by dodecyl trimethylammonium bromide (DTAB) showed decrease in the stability of MT in the presence of $Cu ^{2+}$ or $Ni ^{2+}$ using their activation concentrations. Both activities of MT were also assessed in the presence of different concentrations of these ions, separately, with various monophenols and their corresponding diphenols. Kinetic studies revealed that cresolase activity on p-coumaric acid was boosted in the presence of either of the metal ions, but inhibited when phenol, L-tyrosine, or 4-[(4-methylphenyl)azo]-phenol was substrate. Similarly, catecholase activity on caffeic acid was enhanced in the presence of $Cu ^{2+}$ or $Ni ^{2+}$, but inhibited when catechol, L-DOPA, or 4-[(4-methylbenzo)azo]-1,2-benzenediol was substrate. Results of this study suggest that both cations make MT more fragile and less active. However, the effect of the substrate structure on the MT allosteric behavior can not be ignored.

은행잎에서 분리한 Polyphenol Oxidase의 정제 및 특성 (Purificaton and Some Properties of Polyphenol Oxidase from Ginko biloba Leaves)

  • 설지연;박수선;김안근
    • 생약학회지
    • /
    • 제30권3호
    • /
    • pp.306-313
    • /
    • 1999
  • Polyphenol Oxidase(PPO) was purified from an extract of Ginkgo biloba leaves by ammonium sulfate fractionation followed by sephadex G-150 column chromatography, which resulted in a 18-fold increase in specific activity. The enzyme was most active at pH 8.5 and the temperature optimum for the PPO catechol oxidation reaction was $45^{\circ}C$. Heat inactivation studies showed that heating for 7, 9 and 48 min, at 80, 70 and $60^{\circ}C$ respectively caused a 50% loss in enzymatic activity and that the enzyme was completely inactivated after heat treatment at $90^{\circ}C$ for 60 min. Km values of the PPO for catechol, hydroquinone and 4-methylcatechol derived from Lineweaver-Burk plots were $6.06\;{\times}\;10^{-4}M,\;1.02\;{\times}\;10^{-3}M,\;1.41\;{\times}\;10^{-3}M$ respectively. Of the substrates tested, 4-methylcatechol was oxidized most readily and the enzyme did not oxidize monophenols. The enzyme datalyzed browning reaction was completely inhibited in the presence of reducing reagents, namely ascorbic acid, cysteine, glutathione, 2-mercaptoethanol, potassium metabisulfite at 0.5 mM level. Sodium chloride showed very little inhibition effect on Ginkgo biloba leaves PPO. Lineweaver-Burk analysis of inhibition data revealed that the inhibition by cysteine, 2-mercaptoethanol, potassium cyanide was competitive with ki values of $1.1\;{\times}\;10^{-5}M,\;2.4\;{\times}\;10^{-5}M,\;8\;{\times}\;10^{-5}M$, respectively. Among the divalent cations, $Cu^{2+}ion$ was a strong activator on PPO and $Mn^{2+}ion$ was little or no effect on PPO activity $Ni^{2+}ion$ was an inhibitor on PPO.

  • PDF