• 제목/요약/키워드: Catechol 1,2-dioxygenase

검색결과 62건 처리시간 0.016초

Versatile Catabolic Properties of Tn4371-encoded bph Pathway in Comamonas testosteroni (Formerly Pseudomonas sp.) NCIMB 10643

  • Kim, Jong-Soo;Kim, Ji-Hyun;Ryu, Eun-Kyeong;Kim, Jin-Kyoo;Kim, Chi-Kyung;Hwang, In-Gyu;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.302-311
    • /
    • 2004
  • Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643 can grow on biphenyl and alkylbenzenes $(C_2-C_7)$ via 3-substituted catechols. Thus, to identify the genes encoding the degradation, transposon-mutagenesis was carried out using pAG408, a promoter-probe mini-transposon with a green fluorescent protein (GFP), as a reporter. A mutant, NT-1, which was unable to grow on alkylbenzenes and biphenyl, accumulated catechols and exhibited an enhanced expression of GFP upon exposure to these substrates, indicating that the gfp had been inserted in a gene encoding a broad substrate range catechol 2,3-dioxygenase. The genes (2,826 bp) flanking the gfp cloned from an SphI-digested fragment contained three complete open reading frames that were designated bphCDorfl. The deduced amino acid sequences of bphCDorfl were identical to 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (BphD), and OrfI, respectively, that are all involved in the degradation of biphenyl/4-chlorobiphenyl (bph) by Ralstonia oxalatica A5. The deduced amino acid sequence of the orfl revealed a similarity to those of outer membrane proteins belonging to the OmpW family. The introduction of the bphCDorfl genes enabled the NT-l mutant to grow on aromatic hydrocarbons. In addition, PCR analysis indicated that the DNA sequence and gene organization of the bph operon were closely related to those in the bph operon from Tn4371 identified in strain A5. Furthermore, strain A5 was also able to grow on a similar set of alkylbenzenes as strain NCIMB 10643, demonstrating that, among the identified aromatic hydrocarbon degradation pathways, the bph degradation pathway related to Tn4371 was the most versatile in catabolizing a variety of aromatic hydrocarbons of mono- and bicyclic benzenes.

Comparative Genomic Analysis and BTEX Degradation Pathways of a Thermotolerant Cupriavidus cauae PHS1

  • Chandran Sathesh-Prabu;Jihoon Woo;Yuchan Kim;Suk Min Kim;Sun Bok Lee;Che Ok Jeon;Donghyuk Kim;Sung Kuk Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.875-885
    • /
    • 2023
  • Volatile organic compounds such as benzene, toluene, ethylbenzene, and isomers of xylenes (BTEX) constitute a group of monoaromatic compounds that are found in petroleum and have been classified as priority pollutants. In this study, based on its newly sequenced genome, we reclassified the previously identified BTEX-degrading thermotolerant strain Ralstonia sp. PHS1 as Cupriavidus cauae PHS1. Also presented are the complete genome sequence of C. cauae PHS1, its annotation, species delineation, and a comparative analysis of the BTEX-degrading gene cluster. Moreover, we cloned and characterized the BTEX-degrading pathway genes in C. cauae PHS1, the BTEX-degrading gene cluster of which consists of two monooxygenases and meta-cleavage genes. A genome-wide investigation of the PHS1 coding sequence and the experimentally confirmed regioselectivity of the toluene monooxygenases and catechol 2,3-dioxygenase allowed us to reconstruct the BTEX degradation pathway. The degradation of BTEX begins with aromatic ring hydroxylation, followed by ring cleavage, and eventually enters the core carbon metabolism. The information provided here on the genome and BTEX-degrading pathway of the thermotolerant strain C. cauae PHS1 could be useful in constructing an efficient production host.