• Title/Summary/Keyword: Catechol 1,2-dioxygenase

Search Result 62, Processing Time 0.023 seconds

Catechol 1,2-Dioxygenase from Rhodococcus rhodochrous N75 Capable of Metabolizing Alkyl-Substituted Catechols

  • Cha Chang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.778-785
    • /
    • 2006
  • Catechol 1,2-dioxygenase was purified from cells of R. rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single catechol 1,2-dioxygenase was found to be induced with either growth substrate. The enzyme has an estimated $M_r$ of 71,000 consisting of two identical subunits. Catechol 1,2-dioxygenase from R. rhodochrous N75 exhibits some unusual properties including: broad substrate specificity, extradiol cleavage activity with 4-methylcatechol and low $K_m$ values for halocatechols, suggesting that this enzyme is distinct from other known catechol and chlorocatechol 1,2-dioxygenases.

Molecular Cloning and M13 Subcloning of Genes Encoding Catechol Dioxygenases

  • Kim, Young-Soo;Choi, Bong-Soo;Min, Kyung-Rak
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.48-51
    • /
    • 1992
  • Achromobacter xylosoxidans KF701 and Pseudomonas putida (NAH7) were significantly different in degradative capability of aromatic compounds including benzoates, biphenyls, and naphthalene. However, both of the bacterial strains can grown on catechol as the sole carbon and energy source. Catechol 2, 3-dioxygenase gene for naphthalene oxidation or biphenyl oxidation was cloned into Escherichia coli HB 701. A E. coli HB 101 clone containing catechol 2, 3-dioxygenase gene from P. putida (NAH7) contains a recombinant plasmid with 3.60kb pBR322 and 6-kb insert DNA. Another E. coli HB101 clone containing catechol 2, 3-dioxygenase gene from A. xylosoxidans KF 701 has a recombinant plasmid with 4.4kb pBR322 and 10-kb insert DNA. Physical maps of the recombinant plasmids were constructed, and catechol 2, 3-dioxygenase gene in the recombinant plasmide was further localized and subcloned int M13. The cloned-catechol 2, 3-dioxygenase game products were identified as yellow bands on nondenaturaing polyacrylamide gel after electrophoresis followed by activity staining with catechol solution.

  • PDF

Comparative Analysis of Aniline Dioxygenase Genes from Aniline Degrading Bacteria, Burkholderia sp. HY1 and Delftia sp. HY99. (Aniline 분해균주 Burkholderia sp. HY1과 Delftia sp. HY99에서 유래된 Aniline Dioxygenases 유전자의 비교 분석)

  • Kahng, Hyung-Yeel;Oh, Kye-Heon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.104-111
    • /
    • 2007
  • In this study, aniline dioxygenase genes responsible for initial catabolism of aniline in Burkholderia sp. HY1 and Delftia sp. HY99 were cloned and the amino acid sequences were comparatively analyzed, which already have been reported as bacteria utilizing aniline as a sole source of carbon and nitrogen, B. sp. HY1 was found to have at least a plasmid, and the plasmld-cured strain, B. sp. HY1-PC obtained using mitomycin C was tested with wild type strain to investigate whether the former maintained the degradability for aniline. This proved that the aniline oxygenase gene from B. sp. HY1 was located in chromosomal DNA, not in plasmid DNA. Aniline dioxygenase small subunits from B. sp. HY1 and D. sp. HY99 were found, based on 146 amino acids, to share 79% similarity. Notably, ado2 genes from B. sp. HY1 and D. sp. HY99 which were found to be terminal dioxygenase of aniline dioxygenase small subunit showed 99% similarity in the deduced amino acid sequences with tdnA2 of Frateuria sp. ANA-18 and danA2 of D. sp. AN3, respectively. Besides, enzyme assay and amino acid sequence analysis of catechol dioxygenase supported the previous report that B. sp. HY1 might occupy ortho-cleavage pathway using catechol 1,2-dioxygenase, while D. sp. HY99 might occupy catechol 2,3-dioxygenase for meta-cleavage pathway.

Enhancement of cis,cis-Muconate Productivity by Overexpression of Catechol 1,2-Dioxygenase in Pseudomonas putida BCM114

  • Kim, Beum-Jun;Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.112-114
    • /
    • 1998
  • For enhancement of cis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion to cis,cis-muconate) was cloned and expressed in recombinant Pseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM), cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the cae of wild-type P. putida BM014, whereas cis,cis-muconate productivity continuously increased and catechol was completely transformed to cis,cis-muconate for P. putida BCM114. Specific C12O activity of P. putida BCM114 was about three times higher than that of P. putida BM014, and productivity was enhanced more than two times.

  • PDF

Biodegradiation of Benzoate by Pseudomonas sp. (Pseudomonas sp.에 의한Benzoate의 생분해)

  • 김교창;정준영
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.3
    • /
    • pp.165-170
    • /
    • 1996
  • The biodegradation of high concentration of benzoate by enrichment culture with Pseudomonas sp. was investigated. During 50 days continuous culture, average of removal rate of benzoate and COD were 90% and 83%, respectively. And the enzymatic activity of catechol 2,3-dioxygenase was determined in the continuous culture but not Catechol 1,2-dioxygenase. On the other hand, Pseudomonas sp in the culture was investigated with SEM and the result was revealed that the cell shape was more demage according concentration of benzoate.

  • PDF

Purification and Characterization of Catechol 2,3-Dioxygenase from Recombinant Strain E. coli CNU312. (재조합균주 E. coli CNU312가 생산하는 Catechol 2,3-Dioxygenase의 정제 및 특성)

  • 임재윤;최경호;최병돈
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Catechol 2,3-dioxygenase was purified from recombinant strain E. coli CNU312 carrying the tomB gene which was cloned from toluene-degrading Burkholderia cepacia G4. The purification of this enzyme was performed by acetone precipitation, Sephadex G-75 chromatography, electrophoresis and electro-elution. The molecular weight of native enzyme was about 140.4 kDa and its subunit was estimated to be 35 kDa by SDS-PAGE. It means that this enzyme consists of four identical subunits. This enzyme was specifically active to catechol, and$K_(m)$ value and $V_(max)$value of this enzyme were 372.6 $\mu$M and 39.27 U/mg. This enzyme was weakly active to 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol, but rarely active to 2,3-DHBP. The optimal pH and temperature of the enzyme were pH 8.0 and $40^{\circ}C$. The enzyme was inhibited by $Co^(2+)$, $Mn^(2+)$, $Zn^(2+)$, $Fe^(2+)$, $Fe^(3+)$, and $Cu^(2+)$ ions, and was inactivated by adding the reagents such as N-bromosuccinimide, and $\rho$-diazobenzene sulfonic acid. The activity of catechol 2,3-dioxygenase was not stabilized by 10% concentration of organic solvents such as acetone, ethanol, isopropyl alcohol, ethyl acetate, and acetic acid, and by reducing agents such as 2-mercaptoethanol, dithiothreitol, and ascorbic acid. The enzyme was inactivated by the oxidizing agent $H_(2)$$O_(2)$, and by chelators such as EDTA, and ο-phenanthroline.

  • PDF

Site-Directed Mutagenesis of Two Cysteines (155, 202) in Catechol 1,2-dioxygenase $I_1$ of Acinetobacter lwoffii K24

  • Kim, Seung-Il;Kim, Soo-Jung;Leem, Sun-Hee;Oh, Kye-Heon;Kim, Soo-Hyun;Park, Young-Mok
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.172-175
    • /
    • 2001
  • Catechol 1,2-dioxygenase $I_1$ ($CDI_1$) is the first enzyme of the $\beta$-ketoadipate pathway in Acinetobacter lowffii K24. $CDI_1$ has two cysteines (155, 202) and its enzyme activity is inhibited by the cysteine inhibitor, $AgNO_3$. Two mutants, $CDI_1$ C155V and $CDI_1$ C202V, were obtained by site-directed mutagenesis. The two mutants were overexpressed and the mutated amino acid residues (Cys$\rightarrow$Val) were characterized by peptide mapping and amino acid sequencing. Interestingly, $CDI_1$ C155V was inhibited by $AgNO_3$, whereas $CDI_1$ C202V was not inhibited. This suggests that $Cys^{202}$ is the sole inhibition site by $AgNO_3$ and is close to the active site of the enzyme. However, the results of the biochemical assay of mutated $CDI_1s$ suggest that the two cysteines are not directly involved in the activity of the catechol 1,2-dioxygenase of $CDI_1$.

  • PDF

Investigation about enzymatic properties of the gene encoding catechol 1,2-dioxygenase from Phenol-degrading, Rhodococcus sp. EL-GT

  • 이희정;이오미;김기한;박근태;박재림;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.102-104
    • /
    • 2001
  • 본 연구는 방향족 화합물질 중 페놀폐수에 대한 생물학적 처리를 위해 본 실험실에서 분리한 페놀분해능이 우수한 Rhodococcus sp. EL-GT를 이용하여 catechol 분해 catechol 1,2-dioxygenase 분해활성을 측정하였고, 이것이 ortho-pathway임을 확인할 수 있었다. 또한 다른 연구에서 보고된 Rhodococrus rhodochrous NCIMB 13259 균주의 catechol 1,2 dioxygenase를 기초로한 primer를 이용하여 PCR을 수행하였으며 이 분해 유전자의 cloning실험을 수행 중이다. 이들 실험을 통하여 Rhodoroccus sp. EL-GT의 페놀분해 균의 유전적 구조 및 특성을 검토하고 이를 이용하여 방향족 화합물의 분해능이 보다 우수한 균주의 개발을 시도하고자 한다.

  • PDF

Characterization of the Quinoline-Degrading Bacterium Pseudomonas sp. NFQ-1 Isolated from Dead Coal Pit Areas (폐광지역에서 분리한 quinoline 분해 세균인 Pseudomonas sp. NFQ-1의 특성연구)

  • 윤경하;황선영;권오성;오계헌
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.174-179
    • /
    • 2003
  • The bacterium NFQ-1 capable of utilizing quinoline (2,3-benzopyridine) as the sole source of carbon, nitrogen and energy was enriched and isolated from soil samples of dead coal pit areas. Strain NFQ-1 was identified as Pseudomonas nitroreducens NFQ-1 by BIOLOG system, and assigned to Pseudomonas sp. NFO-1. Pseudomonas sp. NFQ-1 was used with the concentration range of 1 to 10 mM quinoline. Strain NFQ-1 could degrade 2.5 mM quinoline within 9 hours of incubation. Initial pH 8.0 in the culture was reduced to 6.8, and eventually 7.0 as the incubation was proceeding. 2-Hydroxyquinoline, the first intermediate of the degradative pathway, accumulated transiently in the growth medium. The highest concentration of quinoline (15 mM) in this work inhibited cell growth and quinoline degradation. Pseudomonas sp. NFQ-1 was able to utilize various quinoline derivatives and aromatic compounds including 2-hydroxyquinoline, p-comaric acid, benzoic acid, p-cresol, p-hydroxybenzoate, protocatechuic acid, and catechol. The specific activity of catechol oxygenases was determined to approximately 184.7 unit/㎎ for catechol 1.2-dioxygenase and 33.19 unit/㎎ for catechol 2,3-dioxygenase, respectively. As the result, it showed that strain NFQ-1 degraded quinoline via mainly orthp-cleavage pathway, and in partial meta-cleavage pathway.

Cloning of phnQ Gene Encoding Extradiol Dioxygenase from Pseudomonas sp. DJ77 and Its Expression in Escherichia coli (Pseudomonas sp. DJ77 균주에서 Extradiol Dioxygenase를 암호화하는 phnQ 유전자의 클로닝과 대장균에서의 발현)

  • 신희정;박용춘;민경희;김치경;임재윤;김영창
    • Korean Journal of Microbiology
    • /
    • v.33 no.1
    • /
    • pp.22-26
    • /
    • 1997
  • We cloned the 5~kb Xlwl fragment containing gene responsible for degrad"tion of phenanthrene using pBLUES~ CRIPT SK( +) vector and E. coli XLI-Blue strain from the genomic library of Pseudomonas sp. 0177 and this recombinant plasmid was named pUPX5. The strain containing pUPX5 could produce a yellow meta-cleavage product using 2.3-dihydroxybiphenyl as a substrate. This strain have a higher activity toward 2,3-dihydroxybiphenyl than catechol. We sub cloned and localized the gene encoding 2.3-dihydroxybiphenyl-1.2-dioxygenase. which is designated as phn$\Omega$.

  • PDF