• Title/Summary/Keyword: Catalytic wave

Search Result 20, Processing Time 0.039 seconds

A Study on the Effectiveness of Remanufacturing Technology for the Diesel Oxidation Catalyst(DOC) Deactivated by Diesel Exhaust Gas (경유차 매연저감장치에 의해 비활성화된 DOC촉매의 재제조 효과에 관한 연구)

  • Park, Hea-Kyung
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2010
  • The deactivated diesel oxidation catalyst(DOC) was remanufactured by ultrasonic wave treatment with various solutions, followed by active component re-impregnation. The catalytic performance and surface properties of remanufactured DOC were studied at various remanufacturing conditions. The proper ultrasonic-wave cleaning time at various solutions and optimal re-impregnation amounts of active component for the best catalytic performance were investigated. The catalytic performance tests on the conversions of CO and THC(total hydrocarbon) were also carried out at various temperatures by catalytic reaction test unit using bypass gas from the diesel engine dynamo system. It was found that the catalytic performance of DOC remanufactured with the high-temperature air washing, ultrasonic wave cleaning at acidic/basic solutions and active component re-impregnation method was recovered to 90% level of its activity compared to that of the fresh DOC, which was caused by removing the deactivating materials from the surface of the DOC through the analyses of catalyst performance test and their characterization by Optical microscope, EDX, ICP, TGA, and porosimeter.

Adsorptive Catalytic Wave of Chromium-Cupferron Complex (크롬-쿠페론 착물의 흡착 촉매파)

  • Kwon, Young-Soon;Seo, Soh-Jin;Lee, Sang-Mi
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2002
  • The interfacial accumulation of the chromium-cupferron complex and the catalytic wave of its redox process is characterized by cyclic voltammetry. One cathodic peak is observed in the forward scan at -1.45 V. Scanning in the reverse direction produces a inverted peak at -1.39 V, which is indicative of a catalytic process. The optimal conditions of inverted peak were found to be 1 mM borate buffer solution(pH 9.48) containing $1{\times}10^{-4}M$ cupferron, holding potential of -1.8 V and scan rate of 20 mV/s. Using main peak, a preconcentration time of 1 min results in a detection limit of $3.2{\times}10^{-10}M$.

A Study on the Remanufacturing of the Waste Three-way Catalysts (폐삼원촉매의 재제조에 관한 연구)

  • Huh, Been;Park, Hea-Kyung;Lee, Choul-Ho
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.147-153
    • /
    • 2009
  • Waste three-way catalysts were remanufactured by ultrasonic wave treatment followed by active component re-impregnation and the catalytic activities and surface properties of remanufactured catalysts were measured at various remanufacturing conditions. In case of the catalyst prepared by ultrasonic wave cleaning, the optimal period for elimination of surface contaminants from the waste catalyst was found to be about 5 minutes. The proper re-impregnation amounts of the active components for the best catalytic performance were investigated and the catalytic performance tests were also carried out with various temperature for the total hydrocarbon (THC), carbon monoxide (CO) and nitrogen oxides (NOx) conversions. The experimental results showed that the catalytic performances of the remanufactured catalysts were recovered almost the same level as those of the fresh catalyst except those of the NOx conversion.

Adsorption of Macrocyclic Cobalt Complex on a Glassy Carbon Electrode for the Electrocatalytic Reduction of $O_2$

  • 강찬
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.754-760
    • /
    • 1998
  • It was found that the adsorption of a cobalt(III) complex with a macrocyclic ligand, C-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (hmc), was induced on a glassy carbon electrode by heavily oxidizing the electrode surface. Adsorption properties are discussed. The glassy carbon electrode with the adsorbed complex was employed to see the catalytic activities for the electro-reduction of O2. In the presence of oxygen, reduction of (hmc)Co3+ showed two cathodic waves in cyclic voltammetry. Compared to the edge plane graphite electrode at which two cathodic waves were also observed in a previous study, catalytic reduction of O2 occurred in the potential region of the first wave while it happened in the second wave region with the other electrode. A rotating disk electrode after the same treatment was employed to study the mechanism of the O2 reduction and two-electron reduction of O2 was observed. The difference from the previous results was explained by the different reactivity of the (hmc)CoOOH2+ intermediate, which is produced after the two electron reduction of (hmc)Co3+ in the presence of O2.

Effects of chemistry in Mars entry and Earth re-entry

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.581-594
    • /
    • 2018
  • This paper is the follow-on of a previous paper by the author where it was pointed out that the forthcoming, manned exploration missions to Mars, by means of complex geometry spacecraft, involve the study of phenomena like shock wave-boundary layer interaction and shock wave-shock wave interaction also along the entry path in Mars atmosphere. The present paper focuses the chemical effects both in the shock layer and on the surface of a test body along the Mars orbital entry and compares these effects with those along the Earth orbital re-entry. As well known, the Mars atmosphere is almost made up of Carbon dioxide whose dissociation energy is even lower than that of Oxygen. Therefore, although the Mars entry is less energized than the Earth re-entry, one can expect that the effects of chemistry on aerodynamic quantities, both in the shock layer and on a test body surface, are different from those along the Earth re-entry. The study has been carried out computationally by means of a direct simulation Monte Carlo code, simulating the nose of an aero-space-plane and using, as free stream parameters, those along the Mars entry and Earth re-entry trajectories in the altitude interval 60-90 km. At each altitude, three chemical conditions have been considered: 1) gas non reactive and non-catalytic surface, 2) gas reactive and non-catalytic surface, 3) gas reactive and fully-catalytic surface. The results showed that the number of reactions, both in the flow and on the nose surface, is higher for Earth and, correspondingly, also the effects on the aerodynamic quantities.

Synthesis of Zinc Oxide Nanoparticle-(C60) Fullerene Nanowhisker Composite for Catalytic Degradation of Methyl Orange under Ultraviolet and Ultrasonic Irradiation

  • Ko, Jeong Won;Son, Yeon-A;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.321-328
    • /
    • 2020
  • Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and sodium hydroxide (NaOH) were dissolved in distilled water and stirred for 30 min. The resulting solution was sonicated by an ultrasonic wave for 45 min. This solution was washed with distilled water and ethanol after centrifugation; next, it was placed in an electric furnace at 200℃ for 1 h under the flow of Ar gas to obtain zinc oxide nanoparticle. A zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was synthesized using the zinc oxide nanoparticle solution, C60-saturated toluene, and isopropyl alcohol via the liquid-liquid interfacial precipitation method. The zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite were characterized using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and they were used for the catalytic degradation of methyl orange (MO) under ultraviolet (at 254 and 365 nm) and ultrasonic irradiation. In addition, the catalytic degradation of MO over the zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was evaluated using ultraviolet-visible spectroscopy.

Real-Time Voltammetric Assay of Lead Ion in Biological Cell Systems

  • Ly, Suw-Young
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.231-235
    • /
    • 2009
  • Trace lead detection for cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry was performed using mercury immobilized onto a carbon nanotube electrode (HNPE). Using the characteristics of mercury and the catalytic carbon nanotube structure, a modified technique, the $0.45{\mu}g/l$ detection limit of lead ion was attained. The developed method can be applied to pond water, fish tissue, plant tissue, and in vivo direct assay.

Polarographic Studies on the Kinetics of Cu(II)-thiocyanate and the Adsorption Wave of Cu(I)-thiocyanate (Polarography에 依한 Cupric-thiocyanate의 Kinetics와 Cuprous-thiocyanate의 Adsorption Wave에 關한 硏究)

  • Hwang, Jung-Euy;Chung, Chong-Jae;Son, Moo-Young;Park, Yu-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.3
    • /
    • pp.213-219
    • /
    • 1970
  • In the presence of hydrogen peroxide, the effects of temperature and pH to the catalytic reaction velocity of cupric -thiocyanate and the quantities of reduction products adsorbed on the D.M.E. have been studied by polarographic method. According to these experiments, the following empirical equation has been derived for the relation among temperature $T_i$, concentration of hydrogen ion $pH_i$ and adsorbed cuprous-thiocyanate in moles/$cm^2Z_{ij}$, and rate constant log$K_{ij}$ $$log\;K_{ij}=\frac{1}{T_i}\{A(pH_j)+B\}+C(pH_j)+D$$ $$Z_{ij}=\frac{1}{T_i}\{{\alpha}(pH_j)^{\frac{1}{2}}+{\beta}\}+{\gamma}(pH_j)^{\frac{1}{2}}+{\delta}$$ where, A,B,C,D and {$\alpha},{\beta},{\gamma},{\delta}$ are constants. The Calculated values by both equations are well agreed with empirical values within 8% in the error.

  • PDF

Integrated Microdisk Gold Electrode Modified with Metal-porphyrin and Metal-phthalocyanines for Nitric Oxide Determination in Biological Media

  • Kim, Il-Kwang;Bae, Hyun-Ok;Oh, Gi-Soo;Chung, Hun-Taeg;Kim, Young-Jin;Chun, Hyun-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1579-1584
    • /
    • 2003
  • An integrated gold microdisk electrode was constructed and modified with metal-porphyrin or metal-phthalocyanines for NO determination in biological media. Microanalysis of NO using square wave anodic stripping voltammetry in $1\;{\times}\;10^{-2}$ M $HClO_4$ was optimal when the accumulation potential was 0.1 V, frequency 100 Hz, and the scan rate was 200 mV/s. When the electrode was modified with metal-porphyrin or metal-phthalocyanines, the anodic peak currents of NO increased due to the catalytic oxidation of NO. In case of Fe(II)-phthalocyanine modified electrode, the peak currents remarkably increased and the sensitivity was high. The calibration curve had good linearity in the range from $3.6\;{\times}\;10^{-5}$ M to $7.2\;{\times}\;10^{-7}$ M, and the detection limit was $5.7\;{\times}\;10^{-7}$ M. For the structural stability and increased sensitivity, Fe(II)-phthalocyanine modified gold microdisk electrode coated with Nafion was applied to determination of NO released from cultured macrophase.

A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization (페로브스카이트 태양전지 상용화를 위한 자외선 및 수분 안정성 향상 전략)

  • Hwang, Eunhye;Kwon, Tae-Hyuk
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.