• 제목/요약/키워드: Catalytic nitrate reduction

검색결과 27건 처리시간 0.024초

Nitrate reduction by iron supported bimetallic catalyst in low and high nitrogen regimes

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • 제4권4호
    • /
    • pp.263-271
    • /
    • 2015
  • In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to $300mg/L\;NO_3-N$. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ${\geq}33mg\;catalyst/mg\;NO_3-N$. Maximum nitrogen selectivity (47%) was observed at $66mg\;catalyst/mg\;NO_3-N$, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg $NO_3{^-}-N/g_{catalyst}/h$. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.

중형 기공성 실리카 담체에 담지된 Pd-Cu 촉매를 활용한 수중 질산성 질소 저감 반응 (Catalytic Nitrate Reduction in Water over Mesoporous Silica Supported Pd-Cu Catalysts)

  • 김민성;정상호;이명석;이대원;이관영
    • 청정기술
    • /
    • 제19권1호
    • /
    • pp.65-72
    • /
    • 2013
  • 본 연구에서는 중형 기공성 실리카 담체인 MCM-41과 SBA-15를 활용하여 팔라듐과 구리를 담지한 후, 제조 촉매의 수중 질산성 질소 저감 반응 활성을 평가하였다. 순수 수소 공급 반응 조건에서, 질산성 질소의 농도는 반응 시간에 따라 점차 저감되었지만, 반응기 내부에 높게 형성된 pH로 인해 질소의 선택도가 매우 낮은 문제점이 발견되었다. 이를 해결하기 위해 이산화탄소를 수소와 함께 공급하여 pH의 안정화를 도모하였고, 질소 선택도를 40% 가량 증가시켰다. 상기 두 반응 조건에서 모두 Pd-Cu/MCM-41가 Pd-Cu/SBA-15보다 높은 활성을 나타냈다. 이와 같이 수중 질산성 질소 저감 반응의 활성에 차이를 보이는 두 촉매에 대하여, 질소 흡-탈착, XRD, $H_2$-TPR, XPS 등과 같은 특성 분석을 수행하여 제조 촉매의 구조와 물성이 반응활성에 미치는 영향을 검토해보았다.

나노 크기의 타이타니아 담체를 활용한 Pd-Cu 촉매의 수중 질산성 질소 저감 반응에의 적용 (Catalytic Nitrate Reduction in Water over Nanosized TiO2 Supported Pd-Cu Catalysts)

  • 김민성;이지연;이관영
    • 청정기술
    • /
    • 제20권1호
    • /
    • pp.28-34
    • /
    • 2014
  • 본 연구에서는 나노 크기의 결정 구조를 가진 타이타니아 담체를 용매열합성법(solvothermal method)을 활용하여 합성한 후 팔라듐과 구리를 담지한 촉매를 제조하였다. 제조된 촉매를 수중 질산성 질소 저감 반응에 적용한 결과, 타이타니아 담체의 결정 크기가 반응 활성에 영향을 미치는 것이 확인되었다. 결정 크기가 작은 담체를 활용한 촉매가 더 빠른 속도로 질산성 질소를 저감하였지만, 반응 중 pH가 높게 형성되어 질소 선택도가 매우 낮은 현상을 보였다. 이를 해결하기 위해 pH 완충제인 이산화탄소를 공급하여 질소 선택도를 약 60% 증가시켰다. 상기에 언급한 촉매를 대상으로 질소 흡-탈착, X-ray diffraction (XRD), $H_2$-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) 등의 다양한 특성화 분석을 수행하여 촉매의 반응활성과 물성간의 상관관계에 대해 조사하였다.

Selection of Mediators for Bioelectrochemical Nitrate Reduction

  • Kim Seung Hwan;Song Seung Hoon;Yoo Young Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권1호
    • /
    • pp.47-51
    • /
    • 2005
  • The bioelectrochemical reduction of nitrate in the presence of various mediators including methyl viologen and azure A was studied using a 3-electrode voltammetric system. The catalytic potential for the reduction of the mediators was observed in the reactor, which for methyl viologen and azure A were -0.74 V and -0.32 V, respectively, with respect to the potential of Ag/AgCl reference electrode. This potential was then applied to a working electrode to reduce each mediator for enzymatic nitrate reduction. Nitrite, the product of the reaction, was measured to observe the enzymatic nitrate reduction in the reaction media. Methyl viologen was observed as the most efficient mediator among those tested, while azure A showed the highest electron efficiency at the intrinsic reduction potential when the mediated enzyme reactions were carried out with the freely solubilized mediator. The electron transfer of azure A with respect to time was due to the adhesion of azure A to the hydrophilic surface during the reduction. In addition, the use of the adsorbed mediator on conductive activated carbon was proposed to inhibit the change in the electron transfer rate during the reaction by maintaining a constant mediator concentration and active surface area of the electrode. Azure A showed better than nitrite formation than methyl viologen when used with activated carbon.

히드라진과 질산니켈-아연과의 반응에서 얻은 활성화시킨 촉매를 이용한 방향족 니트로화합물의 환원 (Reduction of Nitroarenes with Hydrazine Monohydrate by Activated Nickel Nitrate-Zinc Catalyst)

  • 윤태호;표상현;박문규;한병희
    • 대한화학회지
    • /
    • 제38권5호
    • /
    • pp.397-403
    • /
    • 1994
  • 질산니켈과 아연을 에탄올 용매하에서 환류반응시켜 얻은 활성화시킨 촉매는 히드라진 존재하에서 방향족 니트로화합물을 주로 아족시 화합물로 환원시켜 주었다. 그러나 질산니켈 대신 염화니켈을 사용하여 얻은 촉매는 같은 조건하에서 단지 방향족 아민만을 얻을 수 있었다. 활성화시키지 않고, 방향족 니트로화합물, 염화니켈이나 질산니켈, 아연 그리고 히드라진 혼합물을 환류반응 시킬 때는 낮은 수율의 아조, 아족시와 아민 화합물을 얻을 수 있었다.

  • PDF

Synthesis of Hybrid Fullerene Oxide[C60(O)n, (n≥1)] - Silver Nanoparticle Composites and Their Catalytic Activity for Reduction of 2-, 3-, 4-Nitroaniline

  • Park, Jeong Hoon;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제54권3호
    • /
    • pp.252-256
    • /
    • 2019
  • Fullerene oxide[$C_{60}(O)_n$, ($n{\geq}1$)] was synthesized by dissolving fullerene[$C_{60}$] and 3-chloroperoxybenzoic acid in toluene under refluxing condition for 5 h. Hybrid fullerene oxide-silver nanoparticle composites were synthesized by dissolving fullerene oxide and silver nitrate[$AgNO_3$] in diethylene glycol under ultrasonic irradiation for 3 h. The synthesized hybrid nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and ultraviolet-visible[UV-vis] spectroscopy. The catalytic activity for the reduction of various nitroanilines[NAs] was identified by UV-vis spectrophotometer. The efficiency of the catalytic reduction by the synthesized hybrid nanocomposites has an order of 4-NA > 2-NA > 3-NA.

Catalytic Reduction of ortho- and meta-Nitroaniline by Nickel Oxide Nanoparticles

  • Jeon, Sugyeong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.191-198
    • /
    • 2020
  • Nickel oxide (NiO) nanoparticles were synthesized by a reaction of nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and sodium hydroxide (NaOH). The synthesized NiO nanoparticles were examined with X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. The NiO nanoparticles were used as the catalyst for the reduction of o- and m-nitroaniline to phenylenediamine. The reduction rate of m-nitroaniline was faster than that of o-nitroaniline. The reduction rate for both o- and m-nitroaniline increased as the reaction temperature increased. The rate of reduction for nitroaniline followed a pseudo first-order reaction rate law.

팔라디움과 인디움을 담지한 Al 층간가교 몬모릴로나이트 촉매의 수중 질산성질소 환원 특성 (The Reduction Properties of Nitrate in Water with Palladium and Indium on Aluminum Pillared Montmorillonite Catalyst)

  • 정상조
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.621-631
    • /
    • 2018
  • In this study, catalyst was made through incipient wetness method using palladium (Pd) as noble metal, indium (In) as secondary metal, and montmorillonite (MK10) and Al pillared montmorillonite (Al-MK10) as supporters. The nitrate reduction rate of the catalysts was measured by batch experiments where H2 gas was used as reducing agent and formic acid as pH controller. Transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were all used to determine the elemental distribution of Pd, In, Al, and Si on catalysts. It was observed that Al pillaring increased the Al/Si elemental composition ratio and point of zero charge of MK10, but decreased its BET specific surface area and pore volume. The nitrate reduction rate of Al-MK10 Pd/In was 2.0 ~ 2.5 times higher than that of MK10 Pd/In using artificial groundwater (GW) in ambient temperature and pressure. Nitrate reduction rates in GW were 1.2 ~ 1.7 times lower than those in distilled deionized water (DDW). Nitrate reduction rates in acidic conditions were higher than those in neutral condition in both GW and DDW. The amount of produced NH3-N over degraded NO3- at acid conditions was lower than that of neutral condition. Even though the leaching of Pd after reaction was measured in DDW it was not detected when both Al-MK10 Pd/In and MK10 Pd/In were used in GW. The modification of montmorillonite as a supporter significantly increased the reductive catalytic activities of nitrates. However, the ratio of producing ammonia by-products to degraded nitrates in ambient temperature and pressure was similar.

망간계 금속산화물을 이용한 저온 선택적 촉매 환원 반응에서 NO2와 NH3 배출 (The Emission of NO2 and NH3 in Selective Catalytic Reduction over Manganese Oxide with NH3 at Low Temperature)

  • 김성수;홍성창
    • 공업화학
    • /
    • 제18권3호
    • /
    • pp.255-261
    • /
    • 2007
  • 망간계 금속산화물을 이용한 저온 선택적 촉매 환원 반응에 대하여 연구하였다. 망간계 금속산화물은 $200^{\circ}C$ 이하의 저온에서 우수한 탈질 특성을 보인다. 온도에 따른 $NH_3/NOx$ 몰비 변화 실험을 통하여 미반응 암모니아의 배출은 몰비가 증가하고 온도가 감소할수록 증가하였으며, $NO_2$의 발생은 반대의 현상을 보였다. $NO_2$는 NO가 촉매 표면에 흡착된 후 nitrate종으로 산화되어 생성되는 것으로 보인다. 촉매 표면에 생성된 nitrate종과 흡착된 암모니아가 반응하기 때문에 $NH_3/NOx$ 몰비 1.0 이상에서도 미반응 암모니아의 배출이 없었다. 담지된 금속산화물의 영향은 Zr은 산화상태를 증가시켜 $NO_2$의 배출이 증가하였으며, Ce를 첨가시킨 경우 $NO_2$ 발생량이 감소하였다. 그러나 금속산화물의 첨가는 전체적으로 NOx 전환율을 감소시켰다

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.