• Title/Summary/Keyword: Catalytic efficiency

Search Result 501, Processing Time 0.03 seconds

A Study on Emissions and Catalytic Conversion Efficiency Characteristics of an Electronic Control Engine Using Ethanol Blended Gasoline as Fuels

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiency characteristics were investigated in a multiple-point EFI gasoline engine, The results show that with the increase of ethanol concentration in the blended fuels, THC emissions were drastically reduced by up to thirty percent, And brake specific fuel consumption was increased, but brake specific energy consumption could be improved. However, unburned ethanol and acetaldehyde emissions increased. Pt/Rh based three-way catalysts were effective to reduce acetaldehyde emissions, but had low catalytic conversion efficiency for unburned ethanol. The effect of ethanol on CO and NOx emissions and their catalytic conversion efficiency had close relation to the engine's speed, load and air/fuel ratio. Furthermore fuels blended with thirty percent ethanol by volume could dramatically reduced THC CO and NOx emissions at idle speed.

A Study on Characteristic of NO Reduction by High Level O2Gas in Selective Non-Catalystic Reaction (High Level O2배가스중 NO 저감에 대한 선택적비촉매환원 반응특성에 관한 연구)

  • 이강우;정종현;오광중
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.577-582
    • /
    • 2002
  • Selective catalytic reduction and selective non-catalytic reduction processes are mainly used to treat nitrogen oxidants generated from fossil-fuel combustion. Especially, the selective non-catalytic reduction process can be operated more economical and designed more simply than the selective catalytic reduction. For this reason, many researchers carried out to increase the removal efficiency of nitrogen oxidants in the condition of low oxygen concentration by using the selective non-catalytic reduction process. However, this study was flue gas contained high oxygen concentration of 20(v/v%) with ammonia as a reducing agent. Moreover, it carried out experiment with many factors that are reaction temperature, retention time, initial NO concentration, NSR(normalized stoichiometric ratio). It was determined optimal operating conditions to improve NO removal efficiency with SNCR process. The De-NOx efficiency was increased with NSR, initial NO concentration and retention time increasement. This study has NO removal efficiency over 80% in the high oxygen concentration as well as low oxygen concentration. The injection of reducing agent may be considered for SNCR process and facility operation in 850$\^{C}$ of optimal condition.

An Experimental Study on NOx Reduction in Exhaust Gas from Agricultural Diesel Engine with Plasma and Catalyst (플라즈마와 촉매를 이용한 농용 디젤기관 배기가스 중의 NOx 저감에 관한 실험적 연구)

  • 이승규;조기현;황의현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.465-472
    • /
    • 1999
  • To remove nitrogen oxides(NOx) in exhaust gas of diesel engine, three-way catalytic process with plasma discharger has great possibilities. Characteristics of NOx removal depends on NO conversion to NO$_2$and/or HNO$_3$due to high activation energies for NO oxidation and reduction. NOx removal efficiency by using three-way catalytic with plasma discharger indicated about 50% at 40watt power consumption condition.

  • PDF

An Experimental Stduy on NOx Reduction in Exhaust Gas from Diesel Engine with Plasma (플라즈마를 이용한 디젤엔진 배기가스 중의 NOx 저감에 관한 실험적 연구)

  • 조기현;황의현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.83-90
    • /
    • 1999
  • To remove nitrogen oxides(NOx) in exhaust gas of diesel engine, three-way catalytic process with plasma discharger has great possbilities. Characteristics of NOx removal depends on NO conversion to $NO_2$ and/or $HNO_3$ due to high activation energies for NO oxidationand reduction. NOx removal efficiency by using three-way catalytic with plasma dischager indicated about 50% at 40 watt power consumption condition.

  • PDF

Combustion Characteristics and Design of Fiber Mat Catalytic Burners (매트 형태 연소촉매를 사용하는 촉매버너의 구조와 연소특성)

  • Song, Kwang-Sup;Jung, Nam-Jo;Kim, Hee-Yeon
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • Flameless fiber mat catalytic burners have been known as an effective heat source in industrial drying processes since heat obtained from combustion can be transferred to absorptive body by far-infrared radiation. In order to extend the application of fiber mat catalytic burner, novel fiber mat catalytic burners were manufactured and combustion characteristics of them were investigated. For diffusive catalytic burners, the efficiency of combustion was significantly affected by the installation direction and the temperature of catalytic bed perimeter influenced on the diffusion rate of oxygen which determined the combustion efficiency of catalytic burner. It was seen in premixed catalytic combustion that air content in premixed fuel gas was optimized at slightly higher than theoretical amount of air. Combustion heat released higher than 70% by radiant heat in premixed catalytic combustion likewise diffusive catalytic combustion.

Catalytic Reduction Efficiency Comparison between Porous Au, Pt, and Pd Nanoplates (요철형 금, 백금, 팔라듐 나노플레이트의 촉매성 환원 효율 비교)

  • Shin, Woojun;Kim, Young-Jin;Jang, Hongje;Park, Ji Hun;Kim, Young-Kwan
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.85-89
    • /
    • 2019
  • The size, morphology and composition of nanoparticles are regarded as the most important factors to the efficiency of catalytic reduction of various chemical compounds. In order to make a systematic comparison, gold, platinum and palladium nanoplates with 100 nm diameter with rough surface morphology were manufactured through the galvanic replacement reaction, and the reaction kinetics of the catalytic reduction of 4-nitrophenol and 4-nitroaniline was systematically analyzed by spectroscopic measurement. According to the observation, the catalytic reduction efficiency was significantly different against the constitutional elements in order of Pd > Au > Pt, and it was additionally influenced by the type of substrate.

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

Catalytic Oxidative and Adsorptive Desulfurization of Heavy Naphtha Fraction

  • Abbas, Mohammad N.;Alalwan, Hayder A.
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.283-288
    • /
    • 2019
  • Catalytic removal of sulfur compounds from heavy naphtha (HN) was investigated using a combination of an oxidation process using hydrogen peroxide and an adsorption process using granulated activated carbon (GAC) and white eggshell (WES). This study investigated the impact of changing several operating parameters on the desulfurization efficiency. Specifically, the volume ratio of $H_2O_2$ to HN (0.01~0.05), agitation speed ($U_{speed}$) of the water bath shaker ($100-500{\pm}1rpm$), pH of sulfur solution (1~5), amount of adsorbent (0.1~2.5 g), desulfurization temperature ($25{\sim}85{\pm}1^{\circ}C$) and contact time (10~180 minutes) were examined. The results indicate that the desulfurization efficiency resulting from catalytic and adsorption processes of GAC is better than that of WES for oxidation and removing sulfur compounds from HN due to its high surface area. The desulfurization efficiency depends strongly on all investigated operating parameters. The maximum removal efficiency of GAC and WES achieved by this study was 86 and 65, respectively.

Infrared Radiative Heat Transfer Characteristics of Fiber Mat Catalytic Burners (매트촉매 버너의 적외선 복사열전달 특성)

  • Song, Kwang Sup;Choi, Jung In
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1049-1055
    • /
    • 2012
  • The fiber mat catalytic burner that uses infrared radiative heat obtained by flameless catalytic combustion was manufactured and tested to investigate its combustion characteristics. About 9 to 17% of combustion heat was released by sensible heat during the premixed catalytic combustion depend on combustion condition. To find out radiation intensity with distance between catalytic burner and sample, the equation that calculate the receiving surface of radiative energy under the fiber mat catalytic burner was driven. This equation was well correlated with the drying rate of melamine. The drying experiments were carried out to the melamine, wood chip and agricultural pallet by using the fiber mat catalytic burner and the energy efficiency was calculated from drying rate of them. The energy efficiency of the fiber mat catalytic burner reaches to 79% in maximum for drying of the wood chip.

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.