• Title/Summary/Keyword: Catalytic deactivation

Search Result 91, Processing Time 0.021 seconds

Simulated Degradation of a Catalytic Converter (배기정화용 촉매장치의 열화 모사)

  • 임명택;위전석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • Use of a phenomenological model, developed far prediction of catalytic deactivation, is demonstrated in comparing harshness of different driving cycles that are currently used to rapidly age catalytic converters on engine test benches. The model shows that seemingly equivalent driving cycles cause the catalytic converters to reach significantly different levels of deactivation. The comparison of the model prediction with the limited vehicle data seems encouraging despite the simplicity of the model at the current stage of its infancy.

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

The Effect of Pore Structure of Zeolites on their Product Distribution and Deactivation in the Catalytic Cracking of n-Octane (n-옥탄의 촉매 분해반응에서 제올라이트의 세공구조가 생성물 분포와 활성저하에 미치는 영향)

  • Min, Byung Goo;Lee, Jae Youl;Song, Yo Soon;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.547-553
    • /
    • 2007
  • The catalytic cracking of n-octane over FER, MFI, MOR and BEA zeolites was studied by the protolytic cracking mechanism in order to understand the effect of pore structure of zeolites on their product composition and deactivation. The selectivities for $C_3$ and $C_3{^=}$ were high over the zeolites with medium pores due to additional cracking, while those for $C_4$ and $C_4{^=}$, the initial products, were high over the zeolites with large pores. MFI zeolite showed slow deactivation due to small carbon deposit, while FER zeolite with small pores deactivated rapidly with severe carbon deposit. The deactivation of BEA zeolite was slow even with a large amount of carbon deposit, but MOR zeolite showed a rapid deactivation even with a small amount of carbon deposit. The conversion measured along with the time on stream on these zeolite catalysts was simulated by a mechanism based on the simplified reaction path of n-octane cracking and the deactivation related to the pore blockage by carbon deposit.

Investigation of Catalytic Deactivation by Small Content Oxygen Contained in Regeneration Gas Influenced on DSRP (직접 황 회수 공정으로 유입되는 재생가스에 함유된 미량산소의 촉매활성저하 원인 규명)

  • Choi, Hee-Young;Park, No-Kuk;Lee, Tae Jin
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • In order to regenerate the sulfidated desulfurization sorbent, oxygen is used as the oxidant agent on the regeneration process. The small amount of oxygen un-reacted in regeneration process is flowed into direct sulfur recovery process. However, the reactivity for $SO_2$ reduction can be deteriorated with the un-reacted oxygen by various reasons. In this study, the deactivation effects of un-reacted oxygen contained in the off-gas of regeneration process flowed into direct sulfur recovery process of hot gas desulfurization system were investigated. Sn-Zr based catalysts were used as the catalyst for $SO_2$ reduction. The contents of $SO_2$ and $O_2$ contained in the regenerator off-gas used as the reactants were fixed to 5.0 vol% and 4.0 vol%, respectively. The catalytic activity tests with a Sn-Zr based catalyst were for $SO_2$ reduction performed at $300-450^{\circ}C$ and 1-20 atm. The un-reacted oxygen oxidized the elemental sulfur produced by $SO_2$ catalytic reduction and the conversion of $SO_2$ was reduced due to the production of $SO_2$. However, the temperature for the oxidation of elemental sulfur increased with increasing pressure in the catalytic reactor. Therefore, it was concluded that the decrease of reactivity at high pressure is occurred by catalytic deactivation, which is the re-oxidation of lattice oxygen vacancy in Sn-Zr based catalyst with the un-reacted oxygen on the catalysis by redox mechanism. Meanwhile the un-reacted oxygen oxidized CO supplied as the reducing agent and the temperature in the catalyst packed bed also increased due to the combustion of CO. It was concluded that the rapidly increasing temperature in the packed bed can induce the catalytic deactivation such as the sintering of active components.

Understanding Deactivation of Ru Catalysts by In-situ Investigation of Surface Oxide Stability under CO Oxidation and Oxidative/Reductive Conditions

  • Qadir, Kamran;Joo, Sang-Hoon;Mun, Bong-Jin S.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.212-212
    • /
    • 2011
  • In addition to the catalysts' activity and selectivity, the deactivation of catalysts during use is of practical importance. It is crucial to understand the phenomena of the deactivation to predict the loss of activity during catalyst usage so that the high operational costs associated with catalyst replacement can be reduced. In this study, the activity of Ru catalysts, such as nanoparticles (3~6 nm) and polycrystalline thin film (50 nm), have been investigated under CO oxidation and oxidative/reductive reaction conditions at various temperatures with the ambient pressure X-Ray photoelectron spectroscopy (APXPS). With APXPS, the surface oxides on the catalyst are measured and monitored in-situ. It was found that the Ru film exhibited faster oxidation-and-reduction compared to that of nanoparticles showing mild oxidative-and-reductive characteristics. Additionally, the larger Ru nanoparticles showed a higher degree of oxide formation at all temperatures, suggesting a higher stability of the oxide. These observations are in agreement with the catalytic activity of Ru catalysts. The loss of activity of Ru films is correlated with bulk oxide formation, which is inactive in CO oxidation. The Ru nanoparticle, however, does not exhibit deactivation under similar conditions, suggesting that its surface is covered with a highly active ultrathin surface oxide. Since the active oxide is more stable as nanoparticles than as a film, the nanoparticles showed mild oxidative/reductive behavior, as confirmed by APXPS results. We believe these simultaneous observations of both the surface oxide of Ru catalysts and the reactivity in real time enable us to pinpoint the deactivation phenomena more precisely and help in designing more efficient and stable catalytic systems.

  • PDF

Methanol-to-Olefin Reaction over MWW and MFI Zeolites: Effect of Pore Structure on Product Distribution and Catalyst Deactivation (MWW와 MFI 제올라이트에서 메탄올의 올레핀으로 전환 반응: 세공 구조가 생성물 분포와 촉매의 활성 저하에 미치는 영향)

  • Song, Ki Won;Seo, Gon;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.521-529
    • /
    • 2011
  • Methanol-to-olefin (MTO) reaction was studied over MWW zeolite with independently developed two pores (circular and straight) and MFI zeolite with intercrossed sinusoidal and straight pores in order to investigate the effect of pore structure on their catalytic behavior. MWW and MFI zeolites with similar acidity exhibited commonly high conversion and slow deactivation in the MTO reaction, but their product selectivities were considerably different: linear hydrocarbons of $C_3-C_9$ were mainly produced on MWW, while the yield of $C_2{^=}$ and aromatics were high on MFI. Polyaroamatic hydrocarbons (PAHs) were accumulated on MWW, but a small amount of benzene and aromatics on MFI. The impregnation of phosphorous on MWW caused significant decreases in the catalytic activity and toluene adsorption, but the decreases were relatively small on MFI. Although the straight pores of MWW were inactive in the MTO reaction due to the accumulation of PAHs, its circular pores which suppressed the formation of PAHs sustained catalytic activity for the production of linear hydrocarbons. Therefore, the impregnation of phosphorous on the circular pores of MWW caused a significant decrease in catalytic activity. The phosphorous impregnation on the cross sections of MFI altered the product selectivity due to the neutralization of strong acid sites, but catalytic deactivation was negligible. The difference of MWW and MFI zeolites in the MTO reaction was explained by their difference in pore structure.

Effect of Butadiene in Catalytic Trimerization of Isobutene Using Commercial C4 Feeds

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Lee, Ji-Sun;Kim, Tae-Jin;Lee, Hee-Du;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.57-60
    • /
    • 2008
  • Catalytic oligomerization of isobutene to produce triisobutenes has been performed over a cation-exchange resin (Amberlyst-35) by using commercial C4 feeds. The catalytic activity in the oligomerization was retained without deactivation up to 90 h of reaction in a simulated reaction feed without butadiene, but its activity was significantly affected by the presence of butadiene in commercial C4 feeds. The isobutene conversion with time-on-stream was significantly decreased in the presence of butadiene, indicating the catalyst deactivation by butadiene. However, the stable activity for trimerization was accomplished when the oligomerization was carried out after eliminating butadiene by hydrogenation of the feeds. This work demonstrates that butadiene plays a role as a catalyst poison on the solid acid catalyst, so that its removal in the reactant feed is essential for practical application of trimerization.

A Study on the Deactivation of Commercial DeNOx Catalyst in Fired Power Plant (화력발전소 상용 탈질 촉매의 활성저하 원인에 관한 연구)

  • Park, Kwang Hee;Lee, Jun Yub;Hong, Sung Ho;Choi, Sang Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.376-381
    • /
    • 2008
  • The deactivation of $V/TiO_2$ catalyst used in SCR (Selective Catalytic Reduction) using ammonia as a reductant to remove the nitrogen oxides (NOx) in the exhaust gas from fired power plant has been studied. The activity and surface area of the catalyst (Used-cat) which was exposed to the exhaust gas for long period have considerably decreased. The characterizations of these SCR catalysts were performed by XRD, FT-IR, FE-SEM, and IC/ICP. The crystal structure of $TiO_2$ both fresh and used catalyst has not been changed. However, $(NH_4)HSO_4$ deposited on the used catalyst surface verified from FT-IR, FE-SEM, and IC/ICP analysis. Moreover, the durability of $SO_2$ was increased by diminishing sulfate ($SO_4^{-2}$)f form.

Deactivation of V2O5/TiO2 catalytic system on the sulfuric oxides (V2O5/TiO2 촉매시스템의 황산화물에 대한 비활성화 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7433-7438
    • /
    • 2015
  • Deactivation characteristics of $V_2O_5/TiO_2$ catalysts were studied for selective catalytic reduction(SCR) of NOx with ammonia in the presence of $SO_2$. Performance of catalyst was investigated for $deNO_x$ activity while changing temperature, $SO_2$ concentration. The activity of catalyst was decreased with the increase of $SO_2$ concentration and reaction time. Also, degree of activity drop was largely decreased with the increase of reaction temperature in the range of $250{\sim}300^{\circ}C$. Physicochemical properties of deactivated catalysts were characterized by BET, XRD, SEM, TPD analysis. According to the analysis results, deactivation phenomena occur due to the relatively high formation of ammonium sulfate salts, which created by unreacted ammonia and water in the presence of $SO_2$. It was revealed that ammonium sulfate cause the pore plogging of support and deposition of active matter.

Effects of Calcium on the Activity of V2O5/TiO2 Catalysts in SCR Processes (SCR 공정에서 Calcium 성분이 V2O5/TiO2 촉매 활성에 미치는 영향)

  • Kim, Jin-Kil;Park, Kwang-Hee;Hong, Sung-Chang;Lee, Eui-Dong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.772-777
    • /
    • 2012
  • Factors acting on the deactivation of $V_2O_5/TiO_2$ catalysts were investigated in the selective catalytic reduction(SCR) process for long term operation. The activity of $V_2O_5/TiO_2$ catalysts was decreased rapidly after 8 months from the starting of operation in the selective catalytic reaction processes. From ICP-AES analysis, the deactivation of the used catalysts could be caused from the calcium component included in urea solution as a reducing agent. It was found from the $NH_3$-TPD experiments that the strong basic element like Ca component drastically affected the acidity of the $V_2O_5/TiO_2$ catalyst. The results gave an explanation on the reason why the component of Ca, even though its concentration is very low, could lead to the deactivation of $V_2O_5/TiO_2$ catalyst in the selective catalytic reaction processes.