• Title/Summary/Keyword: Catalytic Reactions

Search Result 361, Processing Time 0.022 seconds

Transition Metal-Catalyzed and -Promoted Reactions via Carbene and Vinylidene Complexes Generated from Alkynes

  • Ohe, Kouichi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2153-2161
    • /
    • 2007
  • The transition metal-induced in situ generation of carbene complexes from alkynes having a carbonyl or imino group as a nucleophilic functionality has been investigated. These reactive carbenoid species are generated with high atom efficiency through a 6-endo-dig cyclization mode based on the electrocyclization of vinylidene complexes or a 5-exo-dig cyclization mode in π-alkyne complexes, and have been found to serve as versatile intermediates in catalytic carbene transfer reactions. Highlighted and reviewed in this account are the generation and preparation of pyranylidene, furylcarbene, pyrrolylcarbene, and vinylcarbene complexes and their application to [3,3]sigmatropic rearrangement of acylcyclopropylvinylidenes, catalytic cyclopropanation reactions, [2,3]sigmatropic rearrangement or condensation reactions via ylides, ring-opening and substitution reactions with heteroaromatic compounds, and catalytic isomerization of oligoynes.

The Catalytic Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 2-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Eum, Ik Hwan;Lee, Seong Eun;Min, Ji Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.669-672
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the title reactions. The plot of kobs vs the concentration of alkali metal ethoxides is linear for the reactions performed in the presence of complexing age nt, 18-crown-6 ether, but curved upwardly for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions studied in this study behave as a catalyst. The catalytic effect was found to increase in the order Li+ << K+ ${\leq}$ Na+. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M+ ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M+/kEtO-) was found to be 2.3, 9.5 and 8.7 for the reaction of 8-(5-nitroquinolyl) 2-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, indicating that the catalytic effect is larger in the reaction of the former substrate than in that of the latter one. The larger catalytic effect was attributed to two possible complexing sites with alkali metal ions in the former substrate.

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Chul-Hong;Jeong, Young-Sik;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.328-334
    • /
    • 2000
  • The hybrid catalytic(catalytic+thermal) combustor of a lean methane-air mixture on platinum catalyst was investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. For the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. Thus the homogeneous reactions were important to predict the productions of CO and NOx exactly. In thermal combustor, the production of $N_2O$ was more dominant than that of NO due to the relative important of the reaction $N_2+O(+M){\to}N_2O(+M)$. Finally the production of CO and NOx by amount of methane addition were studied.

  • PDF

Homogeneous and Catalytic Methanol Synthesis by Partial Oxidation of Methane (메탄의 균일 및 접촉부분산화에 의한 메탄올 합성)

  • Hahm, Hyun-Sik;Choi, Woo-Jin;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • Methanol was synthesized by homogeneous and catalytic reactions of partial oxidation of methane. The effect of pressure, temperature and oxygen concentration on methanol synthesis was investigated. The catalyst used was Bi-Cs-Mg-Cu-Mo mixed oxide. The partial oxidation reaction was carried out in a fixed bed reactor at 20${\sim}$46 bar and $450{\sim}480^{\circ}C$ and oxygen concentration of 5.3${\sim}$7.7mol%. The results were compared with results of homogeneous reaction performed at the same conditions. Methane conversions of the homogeneous and catalytic reactions increased with temperature. Methanol selectivity of the homogeneous reaction decreased with increasing temperature. However, the methanol selectivity of catalytic reaction increased with temperature. For both homogeneous and catalytic reactions, the methane conversions were around 5%. This may be due to the low oxygen concentration. Methanol selectivity of the catalytic reaction was higher than that of homogeneous one.

Environmental Applications of Rare-Earth Manganites as Catalysts: A Comparative Study

  • Alami, D.
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.211-219
    • /
    • 2013
  • Rare-earth manganites have a great potential for environmental applications based on their chemical and physical properties. The use of rare-earth manganites as catalysts for environmentally essential reactions was reviewed. Artificial neural networks were used to assess the catalytic activity in oxidation reactions. Relative catalytic activities of the catalysts were further discussed. We concluded that cerium manganite is the most practicable catalyst for technological purposes.

$TiO_2$-Ni inverse Catalyst for CRM Reactions with High Resistance to Coke Formation

  • Seo, Hyun-Ook;Sim, Jong-Ki;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.267-267
    • /
    • 2012
  • $TiO_2$-Ni inverse catalysts were prepared using atomic layer deposition (ALD) process and catalytic $CO_2$ reforming of methane (CRM) reaction over catalysts (either bare Ni or $TiO_2$ coated-Ni particles) were performed using a continuous flow reactor at $800^{\circ}C$. $TiO_2$-Ni inverse catalyst showed higher catalytic reactivity at initial stage of CRM reactions at $800^{\circ}C$ comparing to bare Ni catalysts. Moreover, catalytic activity of $TiO_2$/Ni catalyst was kept high during 13 hrs of the CRM reactions at $800^{\circ}C$, whereas deactivation of bare Ni surface was started within 1hr under same conditions. The results of surface analysis using SEM, XPS, and Raman showed that deposition of graphitic carbon was effectively suppressed in a presence of $TiO_2$ nanoparticles on Ni surface, thereby improving catalytic reactivity and stability of $TiO_2$/Ni catalytic systems. We suggest that utilizing decoration effect of metal catalyst with oxide nanoaprticles is of great potential to develop metal-based catalysts with high stability and reactivity.

  • PDF

Optimization by Simulated Catalytic Reaction: Application to Graph Bisection

  • Kim, Yong-Hyuk;Kang, Seok-Joong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2162-2176
    • /
    • 2018
  • Chemical reactions have an intricate relationship with the search for better-quality neighborhood solutions to optimization problems. A catalytic reaction for chemical reactions provides a clue and a framework to solve complicated optimization problems. The application of a catalytic reaction reveals new information hidden in the optimization problem and provides a non-intuitive perspective. This paper proposes a new simulated catalytic reaction method for search in optimization problems. In the experiments using this method, significantly improved results are obtained in almost all graphs tested by applying to a graph bisection problem, which is a representative problem of combinatorial optimization problems.

Kinetics of Catalytic Reactions Occurring in a Small Reaction Volume (작은 반응 매질에서 일어나는 촉매 반응 속도에 관한 연구)

  • Kim, Jung-Han;Sung, Jae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.217-222
    • /
    • 2008
  • We investigate the kinetics of diffusion-influenced catalytic reactions occurring in small reaction volume. From a simple exact model study, we find that the reaction rate coefficient decreases with the size of reaction volume. The explicit expression for the average reaction rate constant is presented, which can be regarded as a generalization of well-known Collins-Kimball rate constant into the reactions occurring in a small reaction volume. It turns out that the traditional diffusion influenced reaction dynamics is followed by a single exponential relaxation phase with a rate constant dependent on the reaction volume for the catalytic reactions occurring in small reaction volumes.

Verification of Heme Catalytic Cycle with 5-Aminosalicylic Acid and Its Application to Soil Remediation of Polycyclic Aromatic Hydrocarbons

  • Chung, Namhyun;Park, Kapsung;Stevens, David K.;Kang, Guyoung
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.139-143
    • /
    • 2014
  • Catalytic degradation of pentachlorophenol in soil by heme and hydrogen peroxide has been hypothesized to occur through nonspecific catalytic reactions similar to those involving ligninase. The present study examines the evidence for a heme catalytic mechanism for the oxidation of organic compounds. In the presence of hydrogen peroxide, heme is converted to the ferryl heme radical (Hm-$Fe^{+4{\cdot}}$), which can oxidize organic compounds, such as 5-aminosalicylic acid (5-ASA). A second 5-ASA may later be oxidized by ferryl heme (Hm-$Fe^{+4}$), which reverts to the ferric heme state (Hm-$Fe^{+3}$) to complete the cycle. We believe that this catalytic cycle is involved in the degradation of hazardous pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Remediation via heme catalytic reactions of PAHs in soil from a pole yard was evaluated, and about 96% of PAHs was found to disappear within 42 days after treatment with heme and hydrogen peroxide. In addition, benzo[a]pyrene and six other PAHs were undetectable among a total of 16 PAH compounds examined. Therefore, we propose heme catalysis as a novel technology for the remediation of hazardous compounds in contaminated soil.