• Title/Summary/Keyword: Catalytic Material

Search Result 301, Processing Time 0.024 seconds

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.

An Investigation on Mitigation of Crystalization Fouling by Physical Water Treatment using Catalytic Material (촉매물질을 이용한 수처리 기법의 결정화 화울링의 저감에 관한 연구)

  • Kim, Sun-Do;Park, Bock-Choon;Baek, Byung-Joon;Kim, Cheol-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1582-1588
    • /
    • 2004
  • The present experimental study aimed to investigate the feasibility of physical water treatment (PWT) devices using catalytic materials to mitigation of crystalization fouling. Two PWT devices having different shape and material were used. The results from microscopic observation and SEM photographs demonstrate that the crystal structure of $CaCO_3$ is Argonite type without water treatment while Calcite type with water treatment, which clearly shows the feasibility of PWT techinque using catalytic materials to mitigate crystalization fouling. For 500 ppm solution, the fouling resistance decreased up to about 23% due to physical water treatment using catalytic materials. The results also reveal that if two more techniques are used simultaneously the additional effects could be expected.

  • PDF

Honeycomb Monolith Coated with Mo(VI)/ZrO2 as a Versatile Catalyst System for Liquid Phase Transesterification

  • Thimmaraju, N.;Pratap, S.R.;Senthilkumar, M.;Mohamed Shamshuddin, S.Z.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.563-570
    • /
    • 2012
  • Solid acid Mo(VI)/$ZrO_2$ with 2-10% Mo(VI) was coated on honeycomb monoliths by impregnation method. These catalytic materials were characterized by BET, $NH_3$-TPD/n-butylamine back titration, PXRD and SEM techniques. Phenyl salicylate (Salol) was synthesized via transesterification of methyl salicylate and phenol over these catalytic materials. An excellent yield (91.0%) of salol was obtained under specific reaction conditions. The effect of poisoning of acid sites of the catalytic material by adsorbing different bases and its effect on total surface acidity, powder XRD phases and catalytic activity was studied. A triangular correlation between the surface acidity, powder XRD phases and catalytic activity of Mo(VI)/$ZrO_2$ was observed. The thermally regenerated catalytic material was reused repeatedly with a consistent high yield of salol.

Catalytic Ozonation of Phenol in Aqueous Solution by Co3O4 Nanoparticles

  • Dong, Yuming;Wang, Guangli;Jiang, Pingping;Zhang, Aimin;Yue, Lin;Zhang, Xiaoming
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2830-2834
    • /
    • 2010
  • The degradation efficiencies of phenol in aqueous solution were studied by semi-continuous experiments in the processes of ozone alone, ozone/bulky $Co_3O_4$ and ozone/$Co_3O_4$ nanoparticles. Catalyst samples (bulky $Co_3O_4$ and $Co_3O_4$ nanoparticles) were characterized by X-ray diffraction and transmission electron microscopy. The Brunauer-Emmett-Teller surface area, $pH_{pzc}$ and the density of surface hydroxyl groups of the two catalyst samples were also measured. The catalytic activity of $Co_3O_4$ nanoparticles was investigated for the removal of phenol in aqueous solutions under different reaction temperatures. Tert-butyl alcohol had little effect on the catalytic ozonation processes. Based on these results, the possible catalytic ozonation mechanism of phenol by $Co_3O_4$ nanoparticles was proposed as a reaction process between ozone molecules and pollutants.

Surface-functionalized Hexagonal Mesoporous Silica Supported 5-(4-Carboxyphenyl)-10,15,20-triphenyl Porphyrin Manganese(III) Chloride and Their Catalytic Activity

  • Zhang, Wei-Jie;Jiang, Ping-Ping;Zhang, Ping-Bo;Zheng, Jia-Wei;Li, Haiyang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4015-4022
    • /
    • 2012
  • Manganese(III) 5-(4-carboxyphenyl)-10,15,20-triphenyl porphyrin chloride (Mn(TCPP)Cl) was grafted through amide bond on silica zeolite Y (HY), zeolite beta ($H{\beta}$) and hexagonal mesoporous silica (HMS). XRD, ICP-AES, $N_2$ physisorption, SEM, TEM, FTIR and thermal analysis were employed to analyse these novel heterogeneous materials. These silica supported catalysts were shown to be used for epoxidation and good shape selectivity was observed. The effect of support structure on catalytic performance was also discussed. The catalytic activity remained when the catalysts were recycled five times. The energy changes about epoxidation of alkenes by $NaIO_4$ and $H_2O_2$ were also computationally calculated to explain the different catalytic efficiency.

Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor (나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향)

  • Hong, Sung-Jei;Isshiki Minoru;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.

The Effect of Electron-withdrawing Group Functionalization on Antibacterial and Catalytic Activity of Palladium(II) Complexes

  • Feng, Zhi-Qiang;Yang, Xiao-Li;Ye, Yuan-Feng;Hao, Lin-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1121-1127
    • /
    • 2014
  • The design, synthesis, and structural characterization of two new palladium complexes based on Schiff base ligands is reported; $[Pd(L1)_2]$ (1) and $[Pd(L2)_2]$ (2), [HL1 = 2-((E)-(2,6-diethylphenylimino)methyl)-4,6-dibromophenol, L2 = (E)-N-benzylidene-2,6-diethylbenzenamine], which are obtained by functionalizing Schiff base ligands with or without electron-withdrawing groups. Both compounds are mononuclear structures. Comparisons are made to the compounds 1 and 2 to analyze and understand the effect of electron-withdrawing groups. Antibacterial activity studies indicate the electron-withdrawing groups on Schiff base ligands enhance antibacterial activity. Catalytic activity, however, is reduced due to the enhanced steric-hindrance of the electron-withdrawing groups. Electronic absorption and emission properties of HL1, L2, 1 and 2 are also reported.

Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2

  • Wu, Jianghao;Jiang, Pingping;Qin, Xiaojie;Ye, Yuanyuan;Leng, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1675-1680
    • /
    • 2014
  • A peroxopolyoxotungsten-based ionic hybrid was synthesized by anion-change of peroxopolyoxometalate (POM) $PW_4O{_{24}}^{3-}$ with dicationic long-chain alkyl imidazolium ionic liquids. The characterization was conducted by FT-IR, TGA, $^1H$-NMR and CHN Elemental analyses. Its catalytic performance was evaluated by the epoxidation of soybean oil with $H_2O_2$ under solvent-free condition, including testing of organic cations influence, catalytic reusability and reaction conditions. The catalyst was proved to be a highly efficient recyclable catalyst for epoxidation of various vegetable oils with $H_2O_2$, showing high $H_2O_2$ utilization efficiency, high catalytic activity, convenient recovery and good reuse ability.

Hydrothermal Synthesis of Nanosized Sulfated Zirconia as an Efficient and Reusable Catalyst for Esterification of Acetic Acid with n-Butanol

  • Yu, Shengjian;Jiang, Pingping;Dong, Yuming;Zhang, Pingbo;Zhang, Yue;Zhang, Weijie
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.524-528
    • /
    • 2012
  • A kind of nanosized sulfated zirconia was prepared by a hydrothermal method, and full characterized by XRD, TEM, BET, TGA, and FTIR. Its catalytic activity was evaluated in the esterification reactions, including the testing of the catalytic reusability and the optimization of reaction conditions. The obtained catalyst was revealed to be highly efficient solid catalyst for the esterification of acetic acid with n-butanol, presenting the advantages of high conversion and selectivity, easy recovery, and steady reusability.