• Title/Summary/Keyword: Catalytic Behavior

Search Result 155, Processing Time 0.025 seconds

Numerical Analysis of dynamic behavior and steady state characteristics of methane autothernal reformer (메탄 자열 개질기의 동적 거동 및 정상 특성에 관한 수치적 연구)

  • Lee, Shin-Ku;Park, Joon-Guen;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.5-8
    • /
    • 2007
  • In this paper, numerical investigation has been carried out to study performance of methane autothermal reformer and dynamic behavior for light-off under various operating conditions. In order to simulate the given problems, numerical methods are incorporated using finite-volume method. In addition, porous medium approach is accepted because the catalytic phenomena occur in porous media. Also, start-up issue is significant in autothermal reformer although the reaction is marginally exothermic. Thus, in this study transient behavior has been also investigated to find out optimal operating conditions for start-up.

  • PDF

An Experimental Study on the Combustion Characteristics of a Catalytic Combustor for an MCFC Power Generation System (MCFC 발전시스템용 촉매연소기의 연소 특성에 관한 실험적 연구)

  • Hong, Dong-Jin;Ahn, Kook-Young;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the MCFC power generation system, the combustor supplies a high temperature mixture of gases to the cathode and heat to the reformer by using the off-gas from the anode; the off-gas includes high concentrations of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and avoid local heating, a catalytic combustor is usually adopted. Catalytic combustion is also generally accepted as one of the environmentally preferred alternatives for generation of heat and power from fossil fuels because of its complete combustion and low emissions of pollutants such as CO, UHC, and $NO_x$. In this study, experiments were conducted on catalytic combustion behavior in the presence of Pd-based catalysts for the BOP (Balance Of Plant) of 5 kW MCFC (Molten Carbonate Fuel Cell) power generation systems. Extensive investigations were carried out on the catalyst performance with the gaseous $CH_4$ fuel by changing such various parameters as $H_2$ addition, inlet temperature, excess air ratio, space velocity, catalyst type, and start-up schedule of the pilot system adopted in the BOP.

Methanol-to-Olefin Reaction over MWW and MFI Zeolites: Effect of Pore Structure on Product Distribution and Catalyst Deactivation (MWW와 MFI 제올라이트에서 메탄올의 올레핀으로 전환 반응: 세공 구조가 생성물 분포와 촉매의 활성 저하에 미치는 영향)

  • Song, Ki Won;Seo, Gon;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.521-529
    • /
    • 2011
  • Methanol-to-olefin (MTO) reaction was studied over MWW zeolite with independently developed two pores (circular and straight) and MFI zeolite with intercrossed sinusoidal and straight pores in order to investigate the effect of pore structure on their catalytic behavior. MWW and MFI zeolites with similar acidity exhibited commonly high conversion and slow deactivation in the MTO reaction, but their product selectivities were considerably different: linear hydrocarbons of $C_3-C_9$ were mainly produced on MWW, while the yield of $C_2{^=}$ and aromatics were high on MFI. Polyaroamatic hydrocarbons (PAHs) were accumulated on MWW, but a small amount of benzene and aromatics on MFI. The impregnation of phosphorous on MWW caused significant decreases in the catalytic activity and toluene adsorption, but the decreases were relatively small on MFI. Although the straight pores of MWW were inactive in the MTO reaction due to the accumulation of PAHs, its circular pores which suppressed the formation of PAHs sustained catalytic activity for the production of linear hydrocarbons. Therefore, the impregnation of phosphorous on the circular pores of MWW caused a significant decrease in catalytic activity. The phosphorous impregnation on the cross sections of MFI altered the product selectivity due to the neutralization of strong acid sites, but catalytic deactivation was negligible. The difference of MWW and MFI zeolites in the MTO reaction was explained by their difference in pore structure.

Mesophase formation behavior in petroleum residues

  • Kumar, Subhash;Srivastava, Manoj
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.171-182
    • /
    • 2015
  • Mesophase pitch is an important starting material for making a wide spectrum of industrial and advanced carbon products. It is produced by pyrolysis of petroleum residues. In this work, mesophase formation behavior in petroleum residues was studied to prepare environmentally-benign mesophase pitches, and the composition of petroleum residues and its influence on the mesophase formation was investigated. Two petroleum residues, i.e., clarified oil s (CLO-1, CLO-2) obtained from fluid catalytic cracking units of different Indian petroleum refineries, were taken as feed stocks. A third petroleum residue, aromatic extract (AE), was produced by extraction of one of the CLO-1 by using N-methyl pyrrolidone solvent. These petroleum residues were thermally treated at 380℃ to examine their mesophase formation behavior. Mesophase pitches produced as a result of thermal treatment were characterized physico-chemically, as well as by instrumental techniques such as Fourier-transform infrared spectroscopy, nuclear magnetic resonance, X-ray diffraction and thermogravimetry/derivative thermogravimetry. Thermal treatment of these petroleum residues led to formation of a liquid-crystalline phase (mesophase). The mesophase formation behavior in the petroleum residues was analyzed by optical microscopy. Mesophase pitch prepared from CLO-2 exhibited the highest mesophase content (53 vol%) as compared to other mesophase pitches prepared from CLO-1 and AE.

Spray Behavior Characteristics of Injector Used for HC-DeNOx Catalyst System in the Transparent Exhaust Manifold (모사 배기관 내 HC-DeNOx 촉매용 인젝터의 분무 거동 특성)

  • Lee, Dong-Hoon;Oh, Jung-Mo;Jeong, Hae-Young;Lee, Ki-Hyung;Yeo, Kwon-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.54-60
    • /
    • 2007
  • A new method that optimizes a control of hydrocarbon (HC) addition to diesel exhaust gas for HC type DeNOx catalyst system has been developed. These catalysts are called as the HC-DeNOx catalyst in this paper. The system using HC-DeNOx catalyst requires a resonable quantity of hydrocarbons addition in the inlet gas of the catalyst, because the HC concentration in a diesel engine is so low that the HC is not sufficient for NOx conversion. Generally ambient temperature in the exhaust manifold is $250{\sim}350^{\circ}C$, so spray behavior in this case is different from that of any other condions. This research shows spray behavior of injected hydrocarbons in the transparent exhaust manifold.

Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System (플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구)

  • Lee, Sang Baek;Jo, Jin-Oh;Jang, Dong Lyong;Mok, Young Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).

Crystallinity of CrOx/TiO2 Catalysts and Their Activity in TCE Oxidation (CrOx/TiO2 촉매의 결정성과 TCE 산화반응 활성)

  • Kim, Moon-Hyeon;Lee, Hyo-Sang
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.829-837
    • /
    • 2014
  • Titania-supported chromium oxides with different loadings have been embarked in catalytic oxidation of trichloroethylene (TCE) to inquire association of the formation of crystalline $Cr_2O_3$ with catalytic performances. A better activity in the oxidative TCE decomposition at chosen temperatures was represented when chromium oxides ($CrO_x$) had been dispersed on pure anatase-type $TiO_2$ (DT51D) rather than on phase-mixed and sulfur-contained ones such as P25 and DT51. The extent of TCE oxidation at temperatures below $350^{\circ}C$ was a strong function of $CrO_x$ content in $CrO_x$/DT51D $TiO_2$, and a noticeable point was that the catalyst has two optimal $CrO_x$ loadings in which the lowest $T_{50}$ and $T_{90}$ values were measured for the TCE oxidation. This behavior in the activity with respect to $CrO_x$ amounts could be associated with the formation of crystalline $Cr_2O_3$ on the support surface, that is less active for the oxidation reaction, and an easier mobility of the surface oxygen existing in noncrystalline $CrO_x$ species with higher oxidation states, such as $Cr_2O_8$ and $CrO_3$.

Toxicity Reduction of VOCs by Catalytic Oxidation Mechanism (VOCs의 촉매산화 메커니즘에 의한 독성 저감효과)

  • 이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.88-93
    • /
    • 2000
  • The objective of this study was to depict the kinetic behavior of the platinum catalyst for the deep oxidation of VOCs and their mixture. The oxidation characteristics of VOCs, which were benzene, toluene, and styrene, was studies on a 0.5% $Pt/{\gamma}-Al_2O_3$ catalyst. The reactivity increases in order benzene>toluene>styrene. In mixtures, remarkable effects on reaction rate and selectivity have been evident ; the strongest inhibiting effect was shown by styrene and increases in a reverse order with respect to that of reactivity. The reaction model reveals that there is a competition between the two reactants for the oxidized catalyst. Thus, the nontoxic catalytic oxidation process was suggested as the new VOCs control technology.

  • PDF

CNT Growth Behavior on Ti Substrate by Catalytic CVD Process with Temperature Gradient in Tube Furnace (촉매 화학기상증착 공정에서 온도구배 설정을 통한 타이타늄 기판에서의 CNT 성장 거동)

  • Park, Ju Hyuk;Byun, Jong Min;Kim, Hyung Soo;Suk, Myung-Jin;Oh, Sung-Tag;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.371-376
    • /
    • 2014
  • In this study, modified catalytic chemical vapor deposition (CCVD) method was applied to control the CNTs (carbon nanotubes) growth. Since titanium (Ti) substrate and iron (Fe) catalysts react one another and form a new phase ($Fe_2TiO_5$) above $700^{\circ}C$, the decrease of CNT yield above $800^{\circ}C$ where methane gas decomposes is inevitable under common CCVD method. Therefore, we synthesized CNTs on the Ti substrate by dividing the tube furnace into two sections (left and right) and heating them to different temperatures each. The reactant gas flew through from the end of the right tube furnace while the Ti substrate was placed in the center of the left tube furnace. When the CNT growth temperature was set $700/950^{\circ}C$ (left/right), CNTs with high yield were observed. Also, by examining the micro-structure of CNTs of $700/950^{\circ}C$, it was confirmed that CNTs show the bamboo-like structure.