• Title/Summary/Keyword: Catalytic Behavior

Search Result 155, Processing Time 0.026 seconds

Study on Prediction of High Temperature Thermal Behavior of, Automotive Catalytic Converters with Oval Type (오벌형 자동차 촉매 컨버터의 고온 열적 거동 예측에 관한 연구)

  • 허형석;원종필;이규현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.15-22
    • /
    • 2002
  • Considering the high temperature durability, the most important issue is to accurately predict the maximum operating temperature of the shell, mat and substrate. This temperature prediction then defines the material selections far the mat, shell and cones, and allows an assessment to be made as to the necessity of heat shielding. In this papers, The commercial code FLUENT was utilized to simulate automotive oval type catalytic converters, with the objective of predicting thermal behavior under steady-state, high-load conditions. Specialized computational models are used to account for effects of heat and mass transfer in the monolith, conjugate heat transfer in the various converter materials, and radiation heat transfer.

Synthesis and Characterization of CdSe/graphene Nanocomposites and their Catalytic Reusability Studies under Visible Light Radiation

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.502-507
    • /
    • 2015
  • We examined the photo catalytic activity and catalytic recyclability of CdSe/graphene nanocomposites fabricated via modified hydrothermal technique. The prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Raman spectroscopic analysis, and X-ray photoelectron spectroscopy (XPS). The photocatalytic behavior was investigated through decomposition of RBB as a standard dye under visible light radiation. Our results indicate that there is significant potential for graphene based semiconductor hybrids materials to be used as photocatalysts under visible light irradiation for the degradation of organic dyes from industry effluents.

Self-catalytic Growth of ${\beta}$-Ga2O3 Nanowires Deposited by Radio-Frequency Magnetron Sputtering

  • Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.291.2-291.2
    • /
    • 2013
  • Growth behavior of b-Ga2O3 nanowires (NWs) on sapphire(0001) substrates during radio-frequency magnetron sputtering is reported. Upon fabrication, flat thin films grew initially, subsequent to which, NW bundles were formed on the surface of thin film with increasing film thickness. This transition of the growth mode occurred only at temperatures greater than ${\sim}450^{\circ}C$. The b-Ga2O3 NWs were grown through the self-catalytic vapor-liquid-solid mechanism with self-assembled Ga seeds. Secondary growth of NWs, which occurred from the sides of primary NWs resulting in branched NW structures, was also observed. Finally, the room temperature photoluminescence properties of as-grown and annealed b-Ga2O3 NW samples were investigated.

  • PDF

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx (NOx 제거용 WO3-TiO2 계 SCR 촉매 제조 및 열적열화거동연구)

  • Shin, Byeongkil;Kim, Janghoon;Yoon, Sanghyeon;Lee, Heesoo;Shin, Dongwoo;Min, Whasik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.596-600
    • /
    • 2011
  • Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.

Catalytic Oxidation of NO on MnO2 in the Presence of Ozone (이산화망간 촉매와 오존을 이용한 NO의 촉매 산화 특성)

  • Chin, Sung-Min;Jurng, Jong-Soo;Lee, Jae-Heon;Jeong, Ju-Young
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.445-450
    • /
    • 2009
  • In this study, the fundamental experiments were performed for catalytic oxidation of NO (50 ppm) on $MnO_2$ in the presence of ozone. The experiments were carried out at various catalytic temperatures ($30-120^{\circ}C$) and ozone concentrations (50-150 ppm) to investigate the behavior of NO oxidation. The honeycomb type $MnO_2$ catalyst was rectangular with a cell density of 300 cells per square inch. Due to $O_3$ injection, NO reacted with $O_3$ to form $NO_2$, which was adsorbed at the $MnO_2$ surface. The excessive ozone was decomposed to $O^*$ onto the $MnO_2$ catalyst bed, and then that $O^*$ was reacted with $NO_2$ to form $NO_3^-$. It was found that the optimal $O_3$/NO ratio for catalytic oxidation of NO on $MnO_2$ was 2.0, and the NO removal efficiency on $MnO_2$ was 83% at $30^{\circ}C$. As a result, NO was converted mainly to $NO_3^-$.

A Clue for Prebiotic Era: Cross-Catalytic Replication of an RNA Ligase Ribozyme

  • Kim Dong-Eun;Joyce Gerald F.
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2004.10a
    • /
    • pp.22-26
    • /
    • 2004
  • A self-replicating RNA ligase ribozyme was converted to a cross-catalytic format whereby two ribozymes direct each other's synthesis from a total of four component substrates. Each ribozyme binds two RNA substrates and catalyzes their ligation to form the opposing ribozyme. The two ribozymes are not perfectly complementary, as is the case for replicating nucleic acid genomes in biology. Rather, the ribozymes contain both template elements, which are complementary, and catalytic elements, which are identical. The specificity of the template interactions allows the cross-catalytic pathway to dominate over all other reaction pathways. In the presence of $2{\mu}M$ each of the corresponding substrates, one ribozyme catalyzes the synthesis of the second ribozyme with an initial rate of $6.8{\times}10^{-3}\;min^{-1}$, while the second ribozyme catalyzes the synthesis of the first with an initial rate of $2.9{\times}10^{-3}min{-1}$. As the concentration of the two ribozymes increases, the rate of formation of additional ribozyme molecules increases, consistent with the overall autocatalytic behavior of the reaction system. Here, I present results that possibly demonstrate a clue for a self-replicating molecule by showing an RNA ligase ribozyme, which is reminiscent of 'Prebiotic Era'.

  • PDF

Polymerization Behavior of Ethylene-Styrene Copolymer using Metallocene Catalyst (메탈로센 중합을 이용한 에틸렌-스티렌 공중합체의 중합 거동)

  • Kim, Dong Hyun;Kim, Hyun Ki;Kim, Tae Wan
    • Applied Chemistry
    • /
    • v.15 no.2
    • /
    • pp.89-92
    • /
    • 2011
  • We synthesized ethylene-styrene copolymer using pyrazolato-type metallocene catalysts. We observed the effects of ethylene contents on the catalytic activity, yield molecular weight and molecular weight distribution. We could also confirm living polymerization behavior through the changes of the Mn and Mw/Mn according to the yield.

Synthetic, Characterization, Biological, Electrical and Catalytic Studies of Some Transition Metal Complexes of Unsymmetrical Quadridentate Schiff Base Ligand

  • Maldhure, A. K.;Pethe, G. B.;Yaul, A. R.;Aswar, A. S.
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.215-224
    • /
    • 2015
  • Unsymmetrical tetradentate Schiff base N-(2-hydroxy-5-methylacetophenone)-N'-(2-hydroxy acetophenone) ethylene diamine (H2L) and its complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, IR, electronic spectra and thermogravimetric analyses. 1H, 13C-NMR and FAB Mass spectra of ligand clearly indicate the presence of OH and azomethine groups. Elemental analyses of the complexes indicate that the metal to ligand ratio is 1:1 in all complexes. Infrared spectra of complexes indicate a dibasic quadridentate nature of the ligand and its coordination to metal ions through phenolic oxygen and azomethine nitrogen atoms. The thermal behavior of these complexes showed the loss of lattice water in the first step followed by decomposition of the ligand in subsequent steps. The thermal data have also been analyzed for the kinetic parameters by using Horowitz-Metzger method. The dependence of the electrical conductivity on the temperature has been studied over the temperature range 313-403 K and the complexes are found to show semiconducting behavior. XRD and SEM images of some representative complexes have been recorded. The antimicrobial activity of the ligand and its complexes has been screened against various microorganisms and all of them were found to be active against the test organisms. The Fe(III) and Ni(II) complex have been tested for the catalytic oxidation of styrene.

Biotemplate Synthesis of Micron Braid Structure CeO2-TiO2 Composite and Analysis of its Catalytic Behavior for CO Oxidation

  • Wang, Chencheng;Jing, Lutian;Chen, Mengpin;Meng, Zeda;Chen, Zhigang;Chen, Feng;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • A series of $CeO_2-TiO_2$ composite samples with different Ce/Ti molar ratios were prepared by the paper template. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm a face-centered cubic lattice of $CeO_2$ with Ce/Ti =8:2 or 9:1 and a two phase mixture of anatase titania and face-centered cubic ceria with Ce/Ti = 7 : 3. The field emission scanning electron microscopy (FESEM) results suggest that the products are micron braid structures consisting of fibers with diameters in a range of $1-6{\mu}m$ and lengths of several hundred micrometers. $N_2$ absorption-desorption testing shows that the composite at Ce/Ti molar fraction of 8 : 2 has the largest BET surface area (about $81m^2{\cdot}g^{-1}$). Compared to the pure $CeO_2$ sample, the composites show superior catalytic activity for $H_2$ reduction and CO oxidation. For the micron braid structure $CeO_2-TiO_2$ composite (Ce/Ti = 8 : 2), due to the high surface area and the solid solution with appropriate $Ti^{4+}$ incorporation, the CO conversion at about $280^{\circ}C$ was above 50% and at $400^{\circ}C$ was 100%.