• Title/Summary/Keyword: Catalyst utilization

Search Result 83, Processing Time 0.021 seconds

Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells

  • Lee Jin Hwa;Won Jongok;Oh In Hwan;Ha Heung Yong;Cho Eun Ae;Kang Yong Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.

Honeycomb-structured Fe2O3 Catalysts for Low-temperature CO Oxidation (산화철 허니컴 구조 촉매를 활용한 일산화탄소 저온 산화반응 연구)

  • Lee, Donghun;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.151-154
    • /
    • 2019
  • We report the effective fabrication processes for more practical monolith catalysts consisting of washcoated alumina on a cordierite honeycomb monolith (CHM) and iron oxides nanoparticles in the alumina prepared by a simple dry coating method. It is confirmed that iron oxide nanoparticles were well deposited into the mesopore of washcoated alumina which is formed on the corner wall of honeycomb channel, and the effect of annealing temperature was evaluated for carbon monoxide oxidation catalysts. $Fe_2O_3/{\gamma}-Al_2O_3/CHM$ catalysts annealed at $350^{\circ}C$ exhibited the most enhanced catalytic activity, 100% conversion efficiency at more than $200^{\circ}C$ operating temperature.

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma;Jin Hyuk Cho;Kangwon Lee;Soo Young Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.29-46
    • /
    • 2023
  • The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

Industrial Utilization and Outlook on Nanoporous Materials (나노세공체 촉매소재의 산업적 활용과 전망)

  • Chang, Jong-San;Hwang, Young Kyu;Park, Yong-Ki;Choi, Won Choon
    • Prospectives of Industrial Chemistry
    • /
    • v.17 no.2
    • /
    • pp.8-20
    • /
    • 2014
  • 나노세공체는 고표면적, 균일한 다공성, 분자크기의 세공구조, 높은 흡착용량, 이온교환 특성, 높은 촉매활성, 분자크기의 형상선택성 등의 특징을 갖기 때문에 촉매 및 흡착제로 나노소재 분야에서 가장 오랫동안 활용되어 왔던 중요한 물질 가운데 하나로 정유 및 석유화학 산업을 비롯한 화학산업과 환경 산업에 광범위하게 사용되고 있다. 본 고찰에서는 결정성 나노세공체 가운데 가장 중요한 제올라이트와 최근 연구가 활발한 하이브리드 나노세공체의 산업적 응용 및 기술개발 동향과 향후 발전 전망에 대해 간략히 기술하였다.

The Effect of Obstacle Number, Shape and Blockage Degree in Flow Field of PEMFC on its Performance

  • Zongxi Zhang;Xiang Fan;Wenhao Lu;Jian Yao;Zhike Sui
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.132-151
    • /
    • 2024
  • Proton exchange membrane fuel cell (PEMFC) has received extensive attention as it is the most common hydrogen energy utilization device. This research not only investigated the effect of obstacle number and shape on PEMFC performance, but also studied the effect of the blockage degree in the channel of PEMFC on its performance. It was found that compared with traditional scheme, longitudinally distributed obstacles scheme can significantly promote reactants transfer to catalyst layer, and the blockage degree in the channel effect PEMFC performance most. The scheme with 10 rectangular obstacles in single channel and 60% channel blockage had the best output performance and the most uniform distribution of reactants and products. Obstacle height distribution can significantly affect PEMFC performance, the blockage degree in the whole basin was large, particularly as the channel was blocked to higher degree in region 2 and region 3, higher net power density and better mass transfer effect can be obtained. Among them, the fuel cell with the blockage degree of 40%, 60% and 60% in region 1, region 2 and region 3 have the best PEMFC output performance and mass transfer, the net power density was 29.8% higher than that of traditional scheme.

Synthesis and Properties of Nonlinear Optical Polymer Derived from α-Methyl Styrene/Maleic Anhydride by Polymer Reaction (고분자 반응을 이용한 Maleic anhydride계 비선형 광학 고분자의 합성 및 전기광학 특성)

  • Park, Lee Soon;Keum, Chang Dae;Song, Jae Won;Kim, Kwang Taek;Kim, Gi Heon;Kang, Shin Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.704-709
    • /
    • 1998
  • Non-linear optical polymer based on poly (${\alpha}$-methylstyrene-co-maleic anhydride) (MSMA) substrate polymer was prepared by polymer reaction method and its thermal and electro-optic properties were examined. In the polymer reaction between MSMA substrate polymer and 2-[4-(4-nitrophenylazo)-N-ethylphenylamino]ethanol (DR1) chromophore, the degree of substitution of DR1 into MSMA was higher with the 4-dimethylaminopyridine (DMAP) as catalyst and 3-dicyclohexyl carbodiimide (DCC) as dehydrating agent (sample, MSMA-DC) than the one with just 4-dimethylaminopyridine as catalyst (sample, MSMA-D). The synthesized NLO polymer (MSMA-DC) exhibited electro-optic coefficient of 18 pm/V (632.8 nm) and glass transition temperature ($T_g$) of about $175^{\circ}C$.

  • PDF

Advancements in High-Efficiency Ammonia Synthesis Technology: A Key Solution for Green Hydrogen Storage in the Carbon-Neutral Era (청정 수소 저장을 위한 고효율, 저탄소 배출 암모니아 합성기술 동향)

  • Weonjun Jeong;Jintae Kim;Kanghee Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.71-93
    • /
    • 2024
  • Recently, the establishment of a hydrogen-based economy and the utilization of low-carbon energy sources, particularly for shipping and power generation, have been in high demand in order to achieve carbon neutrality by 2050. In particular, ammonia is gaining renewed attention because it is capable of serving as a key facilitator for high-efficiency green hydrogen storage and transportation and it is also capable of serving as a low-carbon energy source. Although ammonia can be synthesized through the Haber-Bosch process, the high energy consumption and carbon emissions associated with this process result in minimal carbon reduction. To address the critical drawbacks of the traditional Haber-Bosch process, various thermochemical synthesis methods have been developed recently, allowing for the synthesis of ammonia with lower carbon emissions and a higher energy efficiency. Research is also progressing in the development of high-performance catalyst materials that are capable of demonstrating sufficient ammonia synthesis performance under milder process conditions compared to conventional methods. Additionally, a variety of different processes such as chemical-looping ammonia synthesis, plasma synthesis, and mechanochemical synthesis are being applied diversely. This review aims to provide a detailed overview of the emerging ammonia synthesis technologies that have been developed to effectively store green hydrogen for future applications.

The Simulation and Control of the Reactive Distillation Process for Dimethylcarbonate(DMC) Production

  • Jang, Yong-Hee;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1215-1220
    • /
    • 2004
  • Reactive distillation (RD) is a combination process where both separation and reaction are considered simultaneously in a single vessel. This kind of combination to enhance the overall performance is not a new attempt in the chemical engineering areas. The recovery of ammonia in the classic Solvay process for soda ash of the 1860s may be cited as probably the first commercial application of RD. The RD system has been used for a long time as a useful process and recently the importance of the RD is enlarged more and more. In addition to that, the application fields of RD are diversely diverged. To make the most of the characteristic of RD system, we must decide the best operating condition under which the process shows the most effective productivity and should decide the best control algorithm which satisfies an optimal operating condition. Phosgene which is a highly reactive chemical is used for the production of isocyanates and polycarbonates. Because it has high reactivity and toxicity, its utilization is increasingly burdened by growing safety measures to be adopted during its production. Dimethyl Carbonate (DMC) was proposed as a substitute of phosgene because it is non-toxic and environmentally benign chemical. In this study, RD is used for DMC production process and the transesterification is performed inside of column to produce DMC. In transesterification, the methanol and ethylene carbonate (EC) are used as the reactants. This process use homogeneous catalyst and the azeotrope exists between the reactant and product. Owing to azeotrope, we should use two distillation columns. For this DMC production process, we can suggest two configurations. One is EC excess process and the other is methanol excess process. From the comparison of steady state simulation results where the Naphtali-Sandholm algorithm is used, it showed the better performance to use the methanol excess process configuration than EC excess process. Then, the dynamic simulation was performed to be based on the steady state simulation results and the optimal control system was designed. In addition to that, the optimal operating condition was suggested from previous results.

  • PDF

Optimum Process Condition by Experimental Design Method for the Synthesis of Methylchlorosilanes(MCS) (실험계획법에 의한 메틸염화실란 합성의 최적공정조건)

  • Cho, Chul Kun;Han, Kee Do
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.394-398
    • /
    • 1998
  • An optimum synthetic condition was studied for the MCS used as a silicone monomer. The contact mixture was made from the four component catalyst system($CuCl/ZnCl_2/Sn/Cd$) and silicon particles. The contact mass was used for a series of experiments with methyl chloride, which were designed and done to explore the optimum condition for MCS synthesis by an experimental design method. The optimum temperature and MeCl flow rate, which were obtained using 50g contact mass at 60rpm and 1 atm, were in the range of $300-305^{\circ}C$ and of 70-80ccm. Also a continuous run was performed to confirm the conditions. The results showed that the average reaction rate and selectivity were 170(g-MCS/hr.kg-Si) and 0.05 respectively at 67% conversion of MeCl and 92% silicon utilization rate. Also the parameters of overall reaction rate equation and a total pressure were estimated on the basis of the results of the continuous run.

  • PDF

A Study on Electrode Structure and Characteristics of Electrode by Development of Fabrication Method of Electrode used in PAFCs (PAFC용 전극제작방법의 개선에 의한 전극구조 및 전극특성 연구)

  • Shim, Jae-Cheol;Ahn, Sang-Hyun;Yoo, Duck-Young;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.89-93
    • /
    • 1998
  • To increase performance of electrodes used in PAFC the new fabrication method was introduced and its characteristics were investigated. In the case of traditional method, electrodes show low performance because of dead catalysts. So new process was investigated to increase the utilization of Pt catalyst. After preparing PTFE/C slurry and Pt/C powder respectively, they were mixed at the ratio of 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and electrodes were fabricated. In this case of [PTFE/C(6/4):Pt/C(1/9)=5:5], the performance of electrode, $310mA/cm^2$ at 0.7V, was most excellent.

  • PDF