• 제목/요약/키워드: Catalyst utilization

검색결과 83건 처리시간 0.022초

연료전지 촉매층 내 촉매활성도에 대한 탄소지지 백금 촉매의 기하학적 비등방성 효과에 관한 연구 (Geometrically Inhomogeneous Random Configuration Effects of Pt/C Catalysts on Catalyst Utilization in PEM Fuel Cells)

  • 신승호;김아름;정혜미;엄석기
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.955-965
    • /
    • 2014
  • Transport phenomena of reactant and product are directly linked to intrinsic inhomogeneous random configurations of catalyst layer (CL) that consist of ionomer, carbon-supported catalyst (Pt/C), and pores. Hence, electrochemically active surface area (ECSA) of Pt/C is dominated by geometrical morphology of mass transport path. Undoubtedly these ECSAs are key factor of total fuel cell efficiency. In this study, non-deterministic micro-scale CLs were randomly generated by Monte Carlo method and implemented with the percolation process. To ensure valid inference about Pt/C catalyst utilization, 600 samples were chosen as the number of necessary samples with 95% confidence level. Statistic results of 600 samples generated under particular condition (20vol% Pt/C, 30vol% ionomer, 50vol% pore, and 20nm particle diameter) reveal only 18.2%~81.0% of Pt/C can construct ECSAs with mean value of 53.8%. This study indicates that the catalyst utilization in fuel cell CLs cannot be identical notwithstanding the same design condition.

고분자 전해질 막 연료전지의 촉매층 내의 나피온 아이오노머양에 따른 단위 셀의 전기화학적 특성 연구 (Nafion Ionomer Content in Catalyst Layer for PEMFC Nafion Ionomer Content in Catalyst Layer for PEMFC)

  • 안경용;양철남;이수
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.540-546
    • /
    • 2010
  • In order to confirm the effect of Nafion ionomer content in catalyst layer on the performance of PEMFC, we have fabricated several electrodes which were prepared by varying the quantity of Nafion ionomer from 24 wt.% to 39 wt.% in catalyst layer. The effect of Nafion ionomer of each electrode was evaluated with cyclic voltammetry measurement. In addition, cell performance was obtained through single cell test using hydrogen and air. The Pt utilization and performance of single cell were changed by addition of Nafion ionomer to the electrode. Single cell fabricated with 33 wt.% of Nafion ionomer in catalyst layer showed the maximum Pt utilization and performance.

폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율 (The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst)

  • 나우진;박해경
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.876-885
    • /
    • 2018
  • 폐 RHDM(Residue Hydrodemetallation) 촉매상에 침적된 비활성화 성분인 탄소, 황 을 고온배소 처리하여 제거한 후, 과량 침적되어 있는 바나듐은 초음파 교반기에서 5~15wt% 옥살산 수용액을 이용하여 $50^{\circ}C$, 5분 조건하에 바나듐 추출량을 조절함으로써 NOx 저감을 위한SCR(Selective Catalytic Reduction) 촉매로의 적용 가능성을 확인하고자 하였다. 폐촉매와 단계별 처리된 RHDM 촉매를 대상으로 상압반응기상에서 NOx 저감 효율을 측정하였고, 촉매의 성분분석은 ICP, C & S analyzer 및 XRF를 이용하여 분석하였다. 10wt% 옥살산 수용액으로 바나듐을 침출한 촉매가 가장 안정적이었으며 높은 NOx 저감 효율을 보였다. 이를 메탈폼 형태의 지지체에 워시코팅한 촉매는 상용 SCR 촉매와 동등 수준의 NOx 저감 효율을 나타내었다. 따라서 폐 RHDM 촉매의 처리 조건 조정에 관한 후속 연구를 통하여 각 적용처에 적합한 SCR 촉매로의 이용 가능성은 충분할 것으로 사료된다.

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

목질계 Biomass의 변환 이용(II) - 목질계 바이오매스로부터 solvolysis법에 의한 용해용 펄프의 제조 - (Conversion of Woody Biomass for Utilization(II) - Preparation of Dissolving Pulp by Solvolysis from Woody Biomass -)

  • 양재경;임부국;장준복;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권4호
    • /
    • pp.45-50
    • /
    • 1997
  • This research was studied for dissolving pulp preparation as the raw material of viscose rayon from woody biomass by solvolysis pretreatment. In the change of pulp characteristic after solvolysis pretreatment, the following results were obtained. In the case of solvolysis pretreatment, we have obtained pulp that high purity cellulose, and degree of polymerization was inclined to decrease less than 440 on the phosphoric acid as catalyst. Comparing phosphoric acid and formic acid as catalyst in the solvolysis pretreatment, using on formic acid catalyst is superior to phosphoric acid catalyst for making dissolving pulp.

  • PDF

Fabrication of a solid catalyst using coal fly ash and its utilization for producing biodiesel

  • Go, Young Wook;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.324-330
    • /
    • 2019
  • To recycle raw fly ash (RFA), a waste from thermal power plants, it was used to prepare solid catalysts which have many advantages compared with homogenous catalysts. When biodiesel was produced from soybean oil using RFA, only 1.2% of biodiesel conversion was obtained. A metal hydroxide, NaOH, KOH or $Ca(OH)_2$, was mixed with the acid-treated fly ash (ATFA), and the mixture was calcined at $700^{\circ}C$ for 3 h to prepare the solid catalyst. The solid catalyst prepared by mixing ATFA with NaOH, designated as SC-Na, showed a better performance than those prepared by mixing ATFA with KOH or $Ca(OH)_2$, respectively. The optimal mass ratio of ATFA with NaOH was 1:3, at which the proportion of $Na_2O$ increased to 60.2% in SC-Na, and 97.8% of biodiesel conversion was achieved under optimal reaction conditions (2 w% SC-Na relative to oil and 5 mL-methanol/g-oil at $50^{\circ}C$ for 4 h). Finally, a batch operation was repeatedly carried out to test the feasibility of reusing the solid catalyst, and more than 96% biodiesel conversion was stably achieved for the third round of operations. This study shows that RFA was successfully recycled to solid catalysts through a simple preparation method, and the solid catalyst was reused for the production of biodiesel with high conversion.

PAFC 전극용 카본블랙상 백금촉매 담지에 관한 연구 (Study on the Pt/C Catalyst Preparation for PAFC's Electrode)

  • 김영우;이주성
    • 공업화학
    • /
    • 제4권3호
    • /
    • pp.522-529
    • /
    • 1993
  • 인산형 연료전지용 전극촉매로 많이 사용되고 있는 고가의 백금촉매의 이용가치를 높이기 위하여 촉매 담지시 백금촉매의 미립화가 매우 중요하다. 따라서 카본블랙상에 고분산화된 촉매의 제조를 위하여, 고전적 함침법, pressing & soaking법, 무전해 도금법 및 콜로이드법의 여러 가지 촉매담지방법에 관하여 연구하였다. 그리고 각 촉매담지방법에 대하여 카본블랙상 백금촉매의 담지수율 및 백금촉매 입자크기를 비교하였다. 담지수율은 DCP로 확인하였으며 입자의 크기는 XRD 및 TEM으로 관찰하였다. 결과 콜로이드방법이 백금촉매를 $30{\AA}$ 이하로 미립화할 수 있는 가장 우수한 촉매담지 방법이었으며 카본 담체에 대한 백금촉매의 담지수율은 99% 이상이었다.

  • PDF

아크 플라즈마 증착공정을 통한 Pt/C 나노촉매 합성 및 특성평가 (Characteristics of Pt/C Nano-catalyst Synthesized by Arc Plasma Deposition)

  • 주혜숙;최한신;하헌필;김도향
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.6-12
    • /
    • 2012
  • Electricity is generated by the combined reactions of hydrogen oxidation and oxygen reduction which occur on the Pt/C catalyst surface. There have been lots of researches to make high performance catalysts which can reduce Pt utilization. However, most of catalysts are synthesized by wet-processes and a significant amount of chemicals are emitted during Pt/C synthesis. In this study, Pt/C catalyst was produced by arc plasma deposition process in which Pt nano-particles are directly deposited on carbon black surfaces. During the process, islands of Pt nano-particles were produced and they were very fine and well-distributed on carbon black surface. Compared with a commercialized Pt/C catalyst (Johnson & Matthey), finer particle size, narrower size distribution, and uniform distribution of APD Pt/C resulted in higher electrochemical active surface area even at the less Pt content.