Hwang, Ra Hyun;Park, Ji Hye;Baek, Jeong Hun;Im, Hyo Been;Yi, Kwang Bok
Clean Technology
/
v.24
no.1
/
pp.35-40
/
2018
$Co_3O_4$ catalysts for $N_2O$ decomposition were prepared by co-precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. Also, 1 wt% $K_2CO_3$ was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. The prepared catalysts were characterized with SEM, BET, XRD, XPS and $H_2-TPR$. The $Co_3O_4$ catalyst exhibited a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was confirmed that the doping of K improves the catalytic activity by increasing the concentration of $Co^{2+}$ in the catalyst which is an active site for catalytic reaction. The catalytic activity tests were carried out at a GHSV of $45,000h^{-1}$ and a temperature range of $250{\sim}375^{\circ}C$. The K-impregnated $Co_3O_4$ catalyst showed much higher activity than $Co_3O_4$ catalysts with promoter only. It is found that the K-impregnation increased the concentration of $Co^{2+}$ more than the added of promoter did, and lowered the reduction temperature to a great extent.
Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Myoung-Jun
Transactions of the Korean Society of Mechanical Engineers B
/
v.33
no.9
/
pp.709-717
/
2009
Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.
Jatropha oil extracted from the seeds of Nepalese Jatropha curcas, a non-edible crop, was used as a raw material and converted to biodiesel through a two-step process consisting of an esterification reaction and a transesterification reaction. Amberlyst-15 catalyst was applied to the esterification reaction between the free fatty acids contained in the Jatropha oil and methanol. The acid value of the Jatropha oil could be lowered from 11.0 to 0.26 mgKOH/g through esterification. Biodiesel was synthesized through a transesterification reaction between Jatropha oil with an acid value of 0.26 mgKOH/g and methanol over NaOH/γ-Al2O3 catalysts. As the loading amount of NaOH increased from 3 to 25 wt%, the specific surface area decreased from 129 to 28 m2/g and the pore volume decreased from 0.249 to 0.129 cm3/g. The amount and intensity of base sites over the NaOH/γ-Al2O3 catalysts increased simultaneously with the NaOH loading amount. It was confirmed that the optimal NaOH loading amount for the NaOH/γ-Al2O3 catalyst was 12 wt%. The optimal temperature for the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst was selected to be 65 ℃. In the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst, the reaction rate was affected by external diffusion limitation when the stirring speed was below 150 RPM, however the external diffusion limitation was negligible at higher stirring speeds.
The effect of acidity and the metal surface area of the Pd loaded zeolite catalysts; prepared from $Ca^{2+}-,\;La^{3+}-,\;NH_4^+-$exchanged Y and dealuminated HY was studied for the reaction of n-butane. The amount of strong acid site determined by the temperature programmed desorption of ammonia increased in the order NaY < CaY < LaY. Total amount of acid site decreased with increasing degree of dealumination, but the portion of strong acid site increased with increasing $SiO_2/Al_2O_3$ ratio. The effective metal surface area determined by the CO adsorption technique was large for those zeolite catalysts having strong acidity. It was found that conversion of n-butane was strongly dependent on the acidity and the effective metal surface area of the catalysts. The fact that the conversion of n-butane was proportional to the effective metal surface area suggests that the dehydrogenation by metallic component is the primary step in the reaction of n-butane.
The partial oxidation of methane with nitrous oxide on silica-supported metal-oxygen cluster compounds, known as heteropoly acids, has been studied. The effects of several variables such as reaction temperature, partial pressure of reactants, residence time, loading of the catalysts, and pretreatment temperature, on the conversion and product distribution were observed. The kinetics also has been studied. The conversion and yield of formaledehyde show maximum values at a loading of 20 wt%. The apparent reaction order of methane conversion is ca. 1.0 with respect to $CH_4$ and ca. 0.4 with respect to $N_2O$. In addition, the apparent activation energy is 30.78 kcal/mole. The addition of small quantities methane whereas water introduced to the reactant decreased the activity of catalyst under present study.
The water-gas shift reaction for the compact reformer was carried out at a gas hourly space velocity of 72,152 h-1 over the Cu-Nb-CeO2 catalysts prepared by co-precipitation method. In order to investigate the effect of Nb2O5 promotion over a Cu-CeO2 catalyst, the Nb2O5 loading amount was systematically changed from 0 to 5 wt.%. Among the prepared catalysts, the Cu-Nb-CeO2 (1%) catalyst showed the highest catalytic activity (CO conversion=61% at 400℃) as well as 100% CO2 selectivity. The high activity and stability of Cu-Nb-CeO2 (1%) catalyst are correlated to high Brunauer-Emmett-Teller surface area, small metallic Cu crystallite size, and enhanced redox property.
The effect of heat-treatment temperature on the activity of catalysts was studied by investigating $N_2O$ decomposition reaction in Fe ion-supported BEA Zeolite. As a result of $N_2O$ decomposition reaction experiment, $N_2O$ decomposition activity significantly decreased as heat-treatment temperature of Fe/BEA catalyst increased. the shape and size of the particles of Fe/BEA catalyst following the rise of heat-treatment temperature did not display a significant change. But following the rise of the heat-treatment temperature, its surface area was significantly reduced. Also it was confirmed that as the heat-treatment temperature rose, the crystallization of ${\beta}$ structure was greatly reduced. And as heat-treatment temperature rose, while SiO structure either increased or did not exhibit much change, the structure of Fe bonded with lattice structure was speculated to decrease. From the stated results, it was concluded that the increase of heat-treatment temperature became the cause of the declined activity of catalysts by destruction of its ${\beta}$ structure of bonding aluminium and Fe atoms.
Journal of the Korean Applied Science and Technology
/
v.23
no.3
/
pp.223-229
/
2006
Methanol and formaldehyde were produced directly by the partial oxidation of methane over mixed oxide catalysts. The catalysts were composed of Mo and Bi with late-transition metals, such as Mn, Fe, and Co. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by $O_2-TPD$ and BET apparatus. Among the catalysts used, the catalyst composed of 1:1:2.5 molar ratio of Mo:Bi:Mn showed the best methane conversion and methanol selectivity. The change in ratio of methane to oxygen affected at the conversion and selectivity, and the most proper ratio was 10:1.5. Methane conversion, methanol and formaldehyde selectivities increased with the surface areas of the catalysts. From the $O_2-TPD$ result, it was found that the oxygen species responsible for this reaction might be the lattice oxygen species desorbed at high temperature around $800^{\circ}C$.
Mg-and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituently single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, DTA, XPS, TEM and TPD methods were employed. Potassium added to the catalyst played a role of bifunctional promoter which brought the electronic effect as well as the structural one for the increment of particle dispersion. K-addition decreased acid strength of the catalyst by neutralization and increased its acidity. In the dehydrogenation of ethylbenzene, K-addition let the selectivity to styrene be constant throughout the reaction by the proper acid strength of the ferrite for the reaction, which could be obtained from the neutralization of strong acid sites by potassium.
Carbon-encapsulated Ni and metal Ni nanoparticles were synthesized by levitational gas condensation (LGC). Methane ($CH_4$) gas was used to coat the surface of the Ni nanoparticles. The Ni particles had a core diameter of 10 nm, and were covered by 2~3 nm thin carbon layers with multi-shells structure.The low magnetization comparing with the Ni nanoparticles without carbon-shell results in the coexistence of nonmagnetic carbon and a large surface spin percentage with disordered magnetization orientation for the nanoparticles. Biginelli reactions in the presence of L-proline and Ni and carbon encapsulated Ni nanoparticles were carried out to change the ratio between stereoisomers. The obtained S-enantiomers for 3,4-dihydropyrimidine (DHPM) using catalysts of Ni, and Ni@C was an excess of about ${\Delta}{\sim}7.4%$ and ${\Delta}{\sim}19.6%$, respectively. The nanopowders were fully recovered using magnet to reuse as a catalyst. The Ni@C was shown at same yield to formation of 3,4-DHPM, though it was recycled for catalyst in the reaction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.