• Title/Summary/Keyword: Catabolic

Search Result 166, Processing Time 0.025 seconds

Bone marrow stem cells incubated with ellipticine regenerate articular cartilage by attenuating inflammation and cartilage degradation in rabbit model

  • Mohammad Amjad Hossain;Soyeon Lim;Kiran D. Bhilare;Md Jahangir Alam;Baicheng Chen;Ajay Vijayakumar;Hakyoung Yoon;Chang Won Kang;Jong-Hoon Kim
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.83.1-83.12
    • /
    • 2023
  • Background: Ellipticine (Ellip.) was recently reported to have beneficial effects on the differentiation of adipose-derived stem cells into mature chondrocyte-like cells. On the other hand, no practical results have been derived from the transplantation of bone marrow stem cells (BMSCs) in a rabbit osteoarthritis (OA) model. Objectives: This study examined whether autologous BMSCs incubated with ellipticine (Ellip.+BMSCs) could regenerate articular cartilage in rabbit OA, a model similar to degenerative arthritis in human beings. Methods: A portion of rabbit articular cartilage was surgically removed, and Ellip.+BMSCs were transplanted into the lesion area. After two and four weeks of treatment, the serum levels of proinflammatory cytokines, i.e., tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2), were analyzed, while macroscopic and micro-computed tomography (CT) evaluations were conducted to determine the intensity of cartilage degeneration. Furthermore, immuno-blotting was performed to evaluate the mitogen-activated protein kinases, PI3K/Akt, and nuclear factor-κB (NF-κB) signaling in rabbit OA models. Histological staining was used to confirm the change in the pattern of collagen and proteoglycan in the articular cartilage matrix. Results: The transplantation of Ellip.+BMSCs elicited a chondroprotective effect by reducing the inflammatory factors (TNF-α, PGE2) in a time-dependent manner. Macroscopic observations, micro-CT, and histological staining revealed articular cartilage regeneration with the downregulation of matrix-metallo proteinases (MMPs), preventing articular cartilage degradation. Furthermore, histological observations confirmed a significant boost in the production of chondrocytes, collagen, and proteoglycan compared to the control group. Western blotting data revealed the downregulation of the p38, PI3K-Akt, and NF-κB inflammatory pathways to attenuate inflammation. Conclusions: The transplantation of Ellip.+BMSCs normalized the OA condition by boosting the recovery of degenerated articular cartilage and inhibiting the catabolic signaling pathway.

Metabolism of $C^{14}-1-glucose$ and $C^{14}-6-glucose$ by the Ehrlich Ascites Turner Tissue (에르릿히 복수종양의 $C^{14}-1-$ 포도당 및 $C^{14}-6-$포도당 대사에 관한 연구)

  • Kwon, Chang-Rak
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 1967
  • The metabolic patterns of C-1 and C-6-carbon atoms of glucose were observed in the tissue homogenates of the Ehrlich ascites tumor tissue which was incubated for 3 hours in the Dubnuff metabolic shaking incubator. $C^{14}-1-and\;C^{14}-6-glucose$ were used as tracers. The glucose media in which tissue homogenate was incubated was kept at a concentration of 200mg% glucose of carrier and appropriate amount of $C^{14}-1-or\;C^{14}-6-tracer$. At the end of 3 hour incubation, respiratory $CO_2$ samples trapped by alkaline which is placed in the tenter well of incubation flask were analyzed for the total $CO_2$ production rates and their radioactivities. The tissue homogenate samples after incubation were analyzed for their concentrations of glucose, lactate, pyruvate and glycogen and calculations were made on the glucose consumption rate, pyruvate and lactate accumulation rates. The following results were obtained. Data obtained in each group are as follows: 1. In the tissue homogenate, which was incubated with $C^{14}-1-glucose as a substrate, total $CO_2$ production rate averaged $19.0{\pm}5.0{\mu}M/hr/gm$ and the mean specific activity of respiratory $CO_2$ was $840{\pm}296\;cpm/mgC.$ Relative specific activity (RSA) which means the fraction of $CO_2$ derived from medium $C^{14}-1-glucose$ to total $CO_2$ production rate was calculated by ratio of SA of respiratory $CO_2$ and medium $C^{14}-1-glucose.$ RSA was $14.3{\pm}5.0%,$ Accordingly actual $CO_2$ production rate from medium $C^{14}-1-glucose$ showed a mean value of $2.79{\pm}1.35\;{\mu}m$ of which amount was equivalent to the mean value of total glucose consumption rate $(RGDco_2)$, namely, $5.1{\pm}1.3%.$ Lactate and pyruvate appearance rates averaged $7.13{\pm}1.26\;and\;0.21{\pm}0.02{\mu}M/hr/gm,$ respectively. Assuming that these 3 carbon compounds appeared in the medium were derived from glucose, calculations were made that relative glucose disappearance rate into lactate $(RGD_L)$ was $38.0{\pm}5.4%\;and\;RGD_P$ was $1.23{\pm}0.03%.$ Therefore, about 43.3% of the total glucose consumed were accounted for by conversion into the respiratory $CO_2$, lactate and pyruvate. 2. In the second group, which was incubated with $C^{14}-1-glucose$ as a substrate, glucose consumption rate, lactate and pyruvate appearance rates showed almost the same order as the values of the $C^{14}-1-glucose$ substrate group. However, RSA was remarkably decreased showing a mean value of $1.02{\pm}0.13%.$ This fact means that the C-6 carbon of glucose take the minor part in the oxidative metabolism of glucose. The glycogen level in both substrate tissue homogenate showed less than 0.3% of tissue weight. These low value suggested that there was an inhibition of carbohydrate synthesis in the Ehrlich ascites tumor tissue. 3. The catabolic pathway of glucose in the tumor tissue were analyzed on the basis of Bloom's principle from the values of RSA. It was found that in the tumor tissue more than 90% of $CO_2$ derived from glucose were oxidized via the alternate pathway other than principal EMP-TCA cycle such as hexose monophosphate pathway (HMP). From the data described above, it was assumed that in the Ehrlich tumor tissue anaerobic glycolysis proceeds normally although, the oxidation of products of anaerobic glycolysis via the TCA cycle is inhibited resulting in the accumulation of lactate and almost all of oxidative energy from glucose is released by oxidative pathway such as HMP.

  • PDF

Heat Shock-Induced Physical Changes of Megaplasmids in Rhodococcus sp. Strain DK17 (성장 온도가 Rhodococcus sp. Strain DK17의 Megaplasmid 안정성에 미치는 영향)

  • Kim, Kyung-Sun;Kim, Doc-Kyu;Park, Hae-Youn;Sung, Jung-Hee;Kim, Eung-Bin
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.92-96
    • /
    • 2011
  • Rhodococcus sp. strain DK17 possesses three megaplasmids (380 kb pDK1, 330 kb pDK2, and 750 kb pDK3). The alkylbenzene-degrading genes (akbABCDEF) are present on pDK2 while the phthalate operons which are duplicated are present on both pDK2 (ophA'B'C'R') and pDK3 (ophABCR). DK17 with an optimal temperature of $30^{\circ}C$ showed no growth at $37^{\circ}C$. When transferred to $30^{\circ}C$, however, the $37^{\circ}C$ culture began to grow immediately, indicating that $37^{\circ}C$ is not lethal but stressful for DK17 growth. In addition, when exposed to $37^{\circ}C$ even for a short time, a part of DK17 cells lost the ability to degrade o-xylene (a model compound of alkylbenzenes). When two hundred colonies were randomly selected for colony PCR for pDK2-specific akbC, ophC', or pDK3-specific ophC, a total of 29 colonies were found to have lost at least one of the three genes. PFGE analysis clearly showed that all the mutants have different megaplasmid profiles from that of DK17 wild type, which are divided into five different cases: Type I (10 mutants, pDK2 loss and acquisition of a new ~700 kb plasmid), Type II (9 mutants, pDK2 loss), Type III (8 mutants, pDK3 loss and acquisition of a new ~400 kb plasmid), Type IV (1 mutant, pDK3 loss), and Type V (1 mutant, pDK2 and pDK3 loss and acquisition of the ~400 kb and ~700 kb plasmids). The above results showing that growth temperature changes can induce physical changes in bacterial genomes suggest that environmental changes in habitats including temperature fluctuations affect significantly the evolution of bacteria.

Identification of Interleukin 1-Responsive Genes in Human Chondrosarcoma SW1354 cells by cDNA Microarray Technology

  • Jeon, Jun-Ha;Jung, Yong-Wook;Yun, Dae-Young;Kim, Hyun-Do;Kwon, Chang-Mo;Hong, Young-Hoon;Kim, Jae-Ryong;Lee, Choong-Ki
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.1
    • /
    • pp.24-40
    • /
    • 2007
  • Background : Accumulating evidence shows that interleukin(IL)-1 plays a critical role in inflammation and connective tissue destruction observed in both osteoarthritis and rheumatoid arthritis. IL-1 induces gene expression related to cytokines, chemokines and matrix metalloproteinases by activation of many different transcription factors. Materials and Methods : The chondrosarcoma cell line, SW1353, is known to be a valuable in vitro system for investigating catabolic gene regulation by IL-$1{\beta}$ in chondrocytic cells. To explore and analyze the changes in gene expression by IL-1 responsible for arthritis, SW1353 was treated with IL-1 for 1, 6 and 24 h and then total RNAs were purified for each time. The changes in gene expression were analyzed with 17k human cDNA microarrays and validated by semi-quantitative RT-PCR. Results : Greater than a two-fold change was observed in 1,200 genes including metallothioneins, matrix metalloproteinases, extracellular matrix proteins, antioxidant proteins, cytoskeleton proteins, cell cycle regulatory proteins, proteins for cell growth and apoptosis, signaling proteins and transcription factors. These changes appeared to be correlate with the pathophysiological changes observed in early osteoarthritis. Conclusion : cDNA microarray analysis revealed a marked variability in gene expression, and provided insight into the overall molecular changes. The result of this study provide initial information for further studies to identify therapeutic targets in osteoarthritis pathogenesis.

  • PDF

Therapeutic Effects of Curdrania tricuspidata Leaf Extract on Osteoarthritis (골관절염 실험모델에서 꾸지뽕나무 추출물의 골관절염 억제효과 연구)

  • Nam, Da-Eun;Kim, Ok Kyung;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.5
    • /
    • pp.697-704
    • /
    • 2013
  • The inhibitory effect of ethanol extracts from Curdrania tricuspidata leaves (CTL) on osteoarthritis was investigated in primary cultured rat cartilage cells and a monosodium-iodoacetate (MIA)-induced arthritis rat model. To identify the effects of CTL 80% ethanol extracts (CTL80) and CTL 10% ethanol extracts (CTL10) against $H_2O_2$ treatment in vitro, cell survival was measured by the MTT assay. Cell survival after $H_2O_2$ treatment increased with CTL80 and CTL10 close to normal up to $300{\mu}g/mL\;H_2O_2$. The mRNA expression of matrix metalloproteinases (MMPs) was determined MMP-7 and MMP-13 (known catabolic factors), were significantly inhibited by CTL 80 and CTL10; a $200{\mu}g/mL$ dose of CTL80 especially decreased MMP-13 expression. In vivo, osteoarthritis was induced by an intra-articular injection of MIA into the knee joints of rats, then CTL80 and CTL10 orally administered daily for 35 days. After the animals were sacrificed, histological evaluations of their knee joints revealed a reduction in polymorphonuclear cell infiltration and smooth synovial lining in the CTL80-500 group. Micro-CT analysis of hind paws from CTL80-500 and CTL10 showed a protection against osteophyte formation, soft tissue swelling, and bone resorption. In conclusion, CTL ethanol extracts are effective in ameliorating joint destruction and cartilage erosion in MIA-induced rats. CTL decreases and normalizes articular cartilage through preventing extracellular matrix degradation and chondrocyte injury, and could potentially serve as a therapeutic treatment for humans.

The Comparative Understanding between Red Ginseng and White Ginsengs, Processed Ginsengs (Panax ginseng C. A. Meyer) (홍삼과 백삼의 비교 고찰)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • Ginseng Radix, the root of Panax ginseng C. A. Meyer has been used in Eastern Asia for 2000 years as a tonic and restorative, promoting health and longevity. Two varieties are commercially available: white ginseng(Ginseng Radix Alba) is produced by air-drying the root, while red ginseng(Ginseng Radix Rubra) is produced by steaming the root followed by drying. These two varieties of different processing have somewhat differences by heat processing between them. During the heat processing for preparing red ginseng, it has been found to exhibit inactivation of catabolic enzymes, thereby preventing deterioration of ginseng quality and the increased antioxidant-like substances which inhibit lipid peroxide formation, and also good gastro-intestinal absorption by gelatinization of starch. Moreover, studies of changes in ginsenosides composition due to different processing of ginseng roots have been undertaken. The results obtained showed that red ginseng differ from white ginseng due to the lack of acidic malonyl-ginsenosides. The heating procedure in red ginseng was proved to degrade the thermally unstable malonyl-ginsenoside into corresponding netural ginsenosides. Also the steaming process of red ginseng causes degradation or transformation of neutral ginsenosides. Ginsenosides $Rh_2,\;Rh_4,\;Rs_3,\;Rs_4\;and\;Rg_5$, found only in red ginseng, have been known to be hydrolyzed products derived from original saponin by heat processing, responsible for inhibitory effects on the growth of cancer cells through the induction of apoptosis. 20(S)-ginsenoside $Rg_3$ was also formed in red ginseng and was shown to exhibit vasorelaxation properties, antimetastatic activities, and anti-platelet aggregation activity. Recently, steamed red ginseng at high temperature was shown to provide enhance the yield of ginsenosides $Rg_3\;and\;Rg_5$ characteristic of red ginseng Additionally, one of non-saponin constituents, panaxytriol, was found to be structually transformed from polyacetylenic alcohol(panaxydol) showing cytotoxicity during the preparation of red ginseng and also maltol, antioxidant maillard product, from maltose and arginyl-fructosyl-glucose, amino acid derivative, from arginine and maltose. In regard to the in vitro and in vivo comparative biological activities, red ginseng was reported to show more potent activities on the antioxidant effect, anticarcinogenic effect and ameliorative effect on blood circulation than those of white ginseng. In oriental medicine, the ability of red ginseng to supplement the vacancy(허) was known to be relatively stronger than that of white ginseng, but very few are known on its comparative clinical studies. Further investigation on the preclinical and clinical experiments are needed to show the differences of indications and efficacies between red and white ginsengs on the basis of oriental medicines.