• Title/Summary/Keyword: Catabolic

Search Result 166, Processing Time 0.023 seconds

Analysis of Varietal Differences in Pre-harvest Sprouting of Rice using RNA-Sequencing (RNA-Sequencing을 이용한 벼 품종간 수발아 차이 분석)

  • Choi, Myoung-Goo;Lee, Hyen-Seok;Hwang, Woon-Ha;Yang, Seo-Yeong;Lee, Yun-Ho;Lee, Chung-gun;Yun, Song Joong;Jeong, Jae-Hyeok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.274-283
    • /
    • 2020
  • Seed dormancy is an adaptive trait in which seeds do not germinate under unfavorable environmental conditions. Low dormancy seeds are easily germinated under optimal environmental conditions, and these characteristics greatly reduce the yield and quality of crops. In the present study, we compared the pre-harvest sprouting (PHS) rate of two cultivars, Joun and Jopyeong, using the Winkler scale after heading day and temperature of the test. The PHS rate increased as the Winkler scale after heading day increased from 700℃ to 1100℃ and the temperature of the test increased. In all conditions, the PHS rate of Jopyeong was higher than that of Joun. RNA-sequencing was used to analyze the cause of the high PHS rate. We analyzed the biological metabolic processes related to the abscisic acid (ABA) metabolite pathway using the KEGG mapper with selected differentially expressed genes in PHS seeds. We found that the expression of ABA biosynthesis genes (OsNCEDs) was down-regulated and that ABA catabolic genes (OsCYP707As) was up-regulated in PHS seeds. However, the quantitative real-time PCR results showed that Joun had a higher expression of OsNCEDs than that of Jopyeong, but OsCYP707As did not yield a significant result. Joun displayed higher ABA content than that of Jopyeong not only during ripeness time but also during PHS treatment. Taken together, we provided evidence that the ABA content remaining in the seed is important to the PHS rate, which is determined by the expression level of the ABA biosynthesis gene OsNCEDs.

Protein Patterns on a Corpus Luteum during Pregnancy in Korean Native Cows

  • Chung, Hak-Jae;You, Dong-Min;Kim, Hyo-Ju;Choi, Hye-Young;Lee, Myeong-Suk;Kim, Jin-Bum;Lee, Suck-Dong;Park, Jung-Yong;Lee, Myeung-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.263-270
    • /
    • 2010
  • Luteal cells produce progesterone that supports pregnancy. Steroidogenesis requires coordination of the anabolic and catabolic pathways of lipid metabolism. In the present study, the corpus luteum (CL) in early pregnancy established from luteal phase and pregnant phase was analyzed. The first study determined progesterone changes in the bovine CL at day 19 (early maternal recognition period) and day 90 in mid-pregnancy and compared them to the CL from day 12 of the estrous cycle. CL alternation was tested using two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF). Comparing CL from luteal phase to those from pregnant phase counterparts, significant changes in expression level were found in 23 proteins. Of these proteins 17 were not expressed in pregnant phase CL but expressed in luteal phase counterpart, whereas, the expression of the other 6 proteins was limited only in pregnant phase CL. Among these proteins, vimentin is considered to be involved in regulation of post-implantation development. In particular, vimentin may be used as marker for CL development during pregnancy because the expression level changed considerably in pregnant phase CL tissue compared with its luteal phase counterpart. Data from 2-DE suggest that protein expression was disorientated in mid pregnancy from luteal phase, but these changes was regulated with progression of pregnancy. These findings demonstrate CL development during mid-pregnancy from luteal phase and suggest that alternations of specific CL protein expression may be involved in maintenance of pregnancy.

Catabolic Enzyme Activities and Physiological Functionalities of Lactic Acid Bacteria Isolated from Korean Traditional Meju (재래식 메주에서 분리한 유산균들의 각종 효소활성 및 기능성)

  • Jeong, Ji-Kang;Zheng, Yanfei;Choi, Hye-Sun;Han, Gwi-Jung;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1854-1859
    • /
    • 2010
  • Three kinds of Korean traditional Meju were selected and the counts of microorganisms in these Meju were determined. The counts of total aerobic bacteria, lactic acid bacteria and yeasts and molds were 107~108, 106~108 and 107~108 cfu/g, respectively in three Meju and lactic acid bacteria were important microorganisms in the fermentation of Meju. Therefore, we isolated three kinds of dominant lactic acid bacteria from these Meju. They were identified as Leuconostoc mesenteroides (98%, Lm-SMm), Lactobacillus plantarum (99%, Lp-SMm) and Lactococcus lactis (98%, Ll-GAm). Then, enzyme activities and physiological functionalities of three lactic acid bacteria were investigated. Protease, lipase and $\alpha$-amylase activities were detected in three lactic acid bacteria, Ll-GAm showed relatively higher activities than other two lactic acid bacteria. Lm-SMm, Lp-SMm and Ll-GAm showed 45, 48 and 60% of antioxidative activity to 1,1-diphenyl-2-picryhydrazyl (DPPH), and exhibited 45, 67 and 70% of inhibitory effects in HT-29 human colon cancer cells, respectively. These results indicate that three lactic acid bacteria isolated from traditional Meju, especially Ll-GAm are applicable to Meju preparation for soybean paste industry.

Distribution of Insulin-Like Growth Factor-Binding Proteins(IGFBPs) and IGFBP-3 Proteolysis in Noninsulin-Dependent Diabetes Mellitus Serum (인슐린 비의존형 당뇨병 환자의 혈청 중 Insulin-Like Growth Factor-Binding Proteins(IGFBPs)의 분포 및 IGFBP-3의 분해)

  • Lee, Hwa-Jin;Kim, Sung-Hyun;Kwon, Mi-Jin;Nam, Taek-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.285-290
    • /
    • 1997
  • The insulin-like growth factors(IGFs) are bound to several binding proteins(IGFBPs) that appear to regulate IGF transport, receptor binding, and its action. The concentration of these peptides are altered by catabolic conditions. To determine IGF-I and IGFBP levels in noninsulin-dependent diabetes mellitus (NIDDM), sera was obtained from 5 patients and 7 controls. Serum levels of IGF-I in NIDDM were lower than those in either of the controls. By western immunoblot analysis, especially IGFBP-1 levels are increased, whereas IGFBP-3 levels decreased and their fragments was increased in NIDDM serum. IGFBP-3 proteolytic activity in NIDDM sera was inhibited by phenylmethylsulfonylfluoride (PMSF), aprotinin, and ethylenediaminetetraacetic acid(EDTA). This pattern of inhibition was consistent with a metal-dependent serine protease. By gelatin zymography, these proteolytic enzymes were identified as the size of 97 and 69 kDa. IGFBP-1, which is primarily insulin regulated, was increased in NIDDM and may modulate circulating IGF-I levels by regulating capillary passage of IGF-I. IGFBP-3 proteolysis markedly reduces its affinity for the IGFs, particularly for IGF-I. This accelerates their kinetics of dissociation, thereby increasing the proportions of IGF-I in free form and its availability to the cells.

  • PDF

Effects of Leucine on in Vivo Protein Synthesis in Skeletal Muscles of Fed and Food-Deprived Rats (Leucine이 정상 또는 굶게 된 쥐의 골격근육의 단백질 생합성에 미치는 영향)

  • 장순옥
    • Journal of Nutrition and Health
    • /
    • v.21 no.4
    • /
    • pp.242-252
    • /
    • 1988
  • In vivo effects of leucine on skeletal muscle protein synthesis in fed and I-day food deprived young rats were examined. Animals assigned to leucine group were given a single i.p. injection of 80 or 160flmoles of leucine while control group animals were saline sham injected. The rate of protein synthesis was measured by the amount of $^{14}\textrm{C} incorporated into muscle protein after a single injection of $^{14}\textrm{C}-tyrosine, IO$\mu$ Ci/l00g B.W. Examined muscles were two different types of hind limb muscles. the oxidative solues and the glycolytic EDL and plantaris. Administered leucine elevated the concentration of free leucine in soleus muscles by 4-6.8 times the normal level. A massive dose of leucine, 160 flmoles, stimulated protein synthesis in the EDL and plantaris by 24 %, 29 % respectively of straved rats. The soleus of I-day food deprived rats and both types of muscles in fed rats did not respond to the injected leucine. The synthesis rate of the EDL and plantaris was supressed to one-half of the normal while the soleus that was not stimulated by leucine maintained a relatively normal rate, 78 %, of protein synthesis after I-day of food deprivation. Thus, in vivo stimulatory effect of leucine appears to be not a general phenomenon but to be related to the degree of catabolic condition developed by stress such as food deprivation. Although anabolic effects of leucine observed in this study was limited, any applicability of this special property of leucine to human subjects for the purpose of protein sparing in skeletal muscles remains to be examined.

  • PDF

Postchilling Accumulation of Superoxide in Cells and Chilling Injury in Rice Plant (Superoxide의 세포내 축적과 벼냉해의 발현)

  • Kim, Jong-Pyung;Hyun, Il;Jung, Jin
    • Applied Biological Chemistry
    • /
    • v.30 no.4
    • /
    • pp.364-370
    • /
    • 1987
  • The $O_2^-$ level of the extract from young rice leaves, which was cold treated for 2 days and then placed at room temperature for a period of time significantly higher than that from tissues untreated. $O_2^-$ level in leaves was practically unchanged during cold treatment for 48 hours. But it started to increase to arrive at maximum in 8 hours, once the plants were placed under room temperature. The abnormal production of $O_2^-$ in mitochondria during postchilling process was interpreted as a biochemical consequence of accumulation of glycolysis product(s) in cytosol and/or NADH in mitochondrial matrix due to disruption of catabolic balance at low temperature. Mitochondria isolated from the chilling injured tissue was found to have lost considerably their respiratory activity. This fact may imply the involvement of intramitochondrial accumulation of $O_2^-$ in the inactivation of electron transport chain system. The observation that mitochondria in the presence of the $O_2^--producing$ enzymatic system (Xanthine/Xanthine oxidase) lost their respiratory activity supports this inference. It was also found in this work that Superoxide dismutase (SOD) is a substrate inducible enzyme, and that SOD is a possible protective agent in plant cell against chilling injury.

  • PDF

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Effects of salmon DNA fraction in vitro and in a monosodium iodoacetate-induced osteoarthritis rat model

  • Ra, Ho Jong;Oh, Mi Young;Kim, Hee Ju;Lee, Seung Yong;Eom, Dae Woon;Lee, Suk Kyu;Kim, Su-Nam;Chung, Kyu Sung;Jang, Hyuk Jai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.163-172
    • /
    • 2018
  • PRF001 is a fragmented DNA polymer extracted from the testes of salmon. The purpose of this study was to assess the anti-inflammatory effect of PRF001 in vitro as well as the protective effect of PRF001 intake against arthritis in a rat model. In vitro, cell survival and inflammatory markers after $H_2O_2$ treatment to induce cell damage were investigated in CHON-001 cells treated with different concentrations of PRF001. In vivo, osteoarthritis was induced by intra-articular injection of monosodium iodoacetate (MIA) into the knee joints of rats. After consumption of PRF001 (10, 50, or 100 mg/kg) for 4 weeks, inflammatory mediators and cytokines in articular cartilage were investigated. In vitro, the levels of inflammatory markers, $IL-1{\beta}$, $TNF-{\alpha}$, COX-2, iNOS, and PGE2, were significantly suppressed by PRF001 treatment. In vivo, the inflammatory mediators and cytokines, $IL-1{\beta}$, p-Erk1/2, $NF-{\kappa}B$, $TNF-{\alpha}$, COX-2, and PGE2, as well as MMP3 and MMP7, which have catabolic activity in chondrocytes, were decreased in the MIA-induced osteoarthritic rats following intake of PRF001. Histological analysis revealed that PRF001 had a protective effect on the articular cartilage. Altogether, these results demonstrated that the anti-inflammatory property of PRF001 contributes to its protective effects in osteoarthritis through deregulating $IL-1{\beta}$, $TNF-{\alpha}$, and subsequent signals, such as p-Erk1/2, $NF-{\kappa}B$, COX-2, PGE2, and MMPs.

Isolation of Cysteine Proteinase Gene (PgCysP1) from Panax ginseng and Response of This Gene to Abiotic Stresses (인삼으로부터 Cysteine Proteinase 유전자의 분리 및 환경 스트레스에 대한 반응)

  • Jeong, Dae-Young;Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • Cysteine proteinases play an essential role in plant growth and development but also in senescence and programmed cell death. They participate in both anabolic and catabolic processes. In addition, they are involved in signalling pathways and in the response to biotic and abiotic stresses. A cDNA clone encoding cysteine proteinase (CP) gene, designated PgCysP1, was isolated from Panax ginseng C. A. Meyer. Reverse transcriptase (RT)-PCR results showed that PgCysP1 expressed at different level in P. ginseng hairy root. Different stresses such as biotic as well as abiotic stresses triggered a significant induction of PgCysP1. The positive responses of PgCysP1 to the various stimuli suggested that PgCysP1 may help to protect the plant against reactive environmental stresses.

A Patient with Propionic Acidemia with a Novel mutation who was Successfully Managed by Home Care-Based Fluid Therapy (가정 간호를 통한 수액 치료로 성공적으로 관리된 새로운 변이를 가진 프로피오닌산혈증 1례)

  • Yang, Aram;Nam, Soon Young;Kim, Jinsup;Kim, Hyun-young;Park, Hyung-Doo;Jin, Dong-Kyu;Cho, Sung Yoon
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • Propionic acidemia (PA) is a rare autosomal recessive metabolic disease caused by the deficiency of propionyl-CoA carboxylase (PCC). PA affects the catabolism of branched chain amino acid and oddchain fatty acid then results in accumulation of propionic acid and other metabolites in plasma and urine. Catabolic stress such as infection, illness or any stress can precipitate cause acute metabolic decompensation, especially in the first years of life. Acute metabolic decompensation commonly calls for emergency treatment or admission and if the patient is in a serious condition, it can lead to coma or death. But frequent admissions or visiting the emergency room are much burden to the patients and their kins. And we experienced the propionic academia with a confirmed novel mutation and the patient suffered from frequent admission and visiting the emergency room. So, we tried the regular home carebased fluid therapy after securing a central venous line. Finally, we succeeded in preventing frequent admissions resulted from acute metabolic decompensation and could contribute to relieving the burden to the patient and their family.

  • PDF