• Title/Summary/Keyword: Cat.M1

Search Result 384, Processing Time 0.025 seconds

Catalases in Acinetobacter sp. Strain JC1 DSM 3803 Growing on Glucose (포도당을 이용하여 성장하는 Acinetobacter sp. Strain JC1 DSM 3809에 존재하는 Catalase)

  • Shin, Kyoung-Ju;Ro, Young-Tae;Kim, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.155-162
    • /
    • 1994
  • Cells of Acinetobacter sp. strain JC1 DSM 3803, an aerobic monoxide-oxidizing bacterium, growing on glucose exhibited high catalase activity at the mid-exponential growth phase. The enzyme activity decreased gradually after then until the early stationary phase, increased again at the mid-stationary phase, and then decreased again thereafter. Cells growing on glucose was found to contain three kinds of catalses. Cat1, Cat2 and Cat3. The activities of Cat1 and Cat3 did change significantly during growth, but that of Cat2 exhibited significant variation. Cat3 was found to present only in cells growing on glucose, but not in cells growing on carbon monoxide of methanol. The activities of call and Cat3 in cell-free extracts were stable upon treatment with ethanol and chloroform, but decreased to some extent when the enzymewere treated with 2mM $H_2O_2$ and/or 3-amino-1,2,4-triazole (AT). Cat2 was found to be extremely sensitive to the ethanol-chloroform and $H_2O_2$ treatments, but was insensitive to the AT treatment. Cat1 exhibited enzyme activity after incubation for 1 min at 80$^{\circ}C$. Cat2 and Cat3 did not show enzyme activity after incubation for 1 min at 60$^{\circ}C$ and 70$^{\circ}C$, respectively. Cat2 was found to have peroxidase activity. Cat3 was purified to homogenity in seven steps. The molecular weight of the native enzyme was estimated to be 150,000. Sodium dodecyl sulfate-gel electrophoresis revealed two identical subunits of molecular weight 65,000. The enzyme was found to show two $K_m$ values of 39 mM and 58mM. The optimal pH for the enzyme activity was 7.0, but the activities at pH 6.0, 8.0, and 9.0, were found to be comparable to that at the optimal pH. The optimal temperature for the enzyme activity was found to be 40$^{\circ}C$. The enzyme also exhibited strong activity at 20$^{\circ}C$, 30$^{\circ}C$, and 50$^{\circ}C$. The purified enzyme was not affected by the ethanol-chloroform treatment. The enzyme, howerver, showed less than 10% of the original activity when it was treated with 12 mN AT, 0.1 mM $NaN_3$ of 1mM KCN.

  • PDF

Stimulation of Trout CYP1A Gene Expression in Mouse HEPA-1 Cells by 3-Methylcholanthrene

  • Lee, Soo-Young;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.404-409
    • /
    • 1997
  • Trout CYP1A-CAT expression construct was generated by cloning -3.5 Kb $5^I$ flanking DNA of trout liver CYP1A gene in front of CAT gene at pCAT-basic vector. Hepa 1 cells, which are known to contain a functional arylhydrbcarbon $receptor^I$ were transfected with trout CYP1A-CAT using lipofectin. 3-Methylcholanthrene (1 nM) was added into hepa 1 cells in culture in order to examine if $5^I$ flanking DNA of trout CYP1A gene could interact with mouse transactivating factors to bring about transcription of the chloramphenicol acetyltransferase(CAT) reporter gene. The level of CAT protein was measured by CAT ELISA and the level of CAT mRNA was determined by RTPCR. The treatment of 1 nM 3-methylcholanthrene resulted in two fold increases in CAT protein as well as CAT mRNA compared to untreated control hepa 1 cells. These data indicate that arylhydrocarbon receptors of mouse hepa 1 cells are functional to activate exogenously transfected trout CYP1A-CAT construct in terms of both transcription and translation of CAT. We also examined the effect of 3-methylcholanthrene on endogenous cyplal activity in hepa 1 cell. 3-Methylcholanthrene (1 nM) treatment to hepa 1 cells trahsfected with trout CYP1A-CAT construct stimulated the level of cyp1a1 mRNA by two folds and the activity of ethoxyresorufin-O-deethylase by two fold compared to that of control cells. In this study we reported that trout CYP1A-CAT reporter gene expression construct could be expressed by 3-methylcholanthrene treatment in mouse hepa 1 cells. Thus trout CYP1A-CAT could serve as a good model to study the mechanism of regulation of CYP1A1 gene expression.

  • PDF

Differential Expression of Three Catalase Genes in Hot Pepper (Capsicum annuum L.)

  • Lee, Sang Ho;An, Chung Sun
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.247-255
    • /
    • 2005
  • Three different catalase cDNA clones (CaCat1, CaCat2, and CaCat3) were isolated from hot pepper (Capsicum annuum L.), and their expression patterns were analyzed at the levels of mRNA and enzyme activity. Northern hybridization showed that the three catalase genes were differentially expressed in various organs, and that expression of CaCat1 and CaCat2 was regulated differently by the circadian rhythm. In situ hybridization revealed different spatial distributions of CaCat1 and CaCat2 transcripts in leaf and stem. In response to wounding and paraquat treatment, CaCat1 mRNA increased at 4-12 h in both paraquat-treated and systemic leaves. In contrast, wounding had no significant effect on expression of the catalase genes. The increase of catalase activity in the paraquat-treated and systemic leaves paralleled that of CaCat1 mRNA, but did not match that of CaCat1 mRNA in paraquat-treated stems. Our results suggest that CaCat1 may play a role in responses to environmental stresses.

Effect of Light and Cadmium on the Activity and Isozyme Pattern of Catalase from Ric(Oryza sativa L.) (빛과 카드뮴이 벼 catalase 활성과 동위효소 발현에 미치는 영향)

  • Kim, Yoon-Kyoung;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.287-292
    • /
    • 2006
  • The effects of cadmium on the catalase activity and isozyme patterns under light and dark conditions of rice(Oryza sativa L. cv. Dongjin) seedlings were examined. Cadmium treatment resulted in the notable enhancement of $H_2O_2$ contents in the seedling roots and leaves under light and dark conditions. The catalase isozyme patterns in the roots were different from those in the leaves, showing tissue-specific expression of the enzyme. Moreover, the expression patterns of catalase isozymes in the green seedling roots were different from those in the etiolated seedling roots following cadmium treatment. The increase of total catalase activity was about 16 times at 1 mM cadmium and marked inductions of the isozyme CAT1 and CAT2 contributed to this increase in the green seedling roots. On the other hand, in the etiolated seedling roots, total catalase activity was lower than that of control at 0.5 and 1 mM cadmium, even though catalase activity increased about 3 times at 0.1 mM cadmium. The 3 fold increase of total catalase activity was mainly due to the increase of CAT1, CAT3 and CAT4 at 0.1 mM cadmium. However, treatment with higher concentrations of cadmium decreased the activity of CAT2 and CAT4 in the etiolated roots. In the leaves, the catalase existed as three isozymes; one cationic isozyme CATc, one neutral isozyme CATn and one anionic isozyme CAT1 in the control. The isozyme patterns and total activities remained unaffected by cadmium under light and dark conditions in the seedling leaves. Taken together, it seems that cadmium-induced changes of catalase might be regulated by light in the roots, but not in the leaves.

LTE Cat.M1 Communication Module for Fishing Gear Automatical Identification Monitoring System (어구 자동식별 모니터링을 위한 LTE Cat.M1 통신 모듈)

  • Kim, Seong-Yuel;Lee, Doo-Cheon;Kim, Kwang-On;Yim, Choon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.682-685
    • /
    • 2021
  • The design and fabrication of LTE Cat.M1 (3GPP Release13 Standardization) modules of ships such as fishing boat and patrol boat are reported in this research. LTE cat.M1 modules are needed to expand the for broadening of IoT services through the ships used in fishing gear automatically identification monitoring system, which is one of applying ICT into the real name system of electric fishing gear.

  • PDF

Analysis of Catalases from Photosynthetic Bacterium Rhodospirillum rubrum Sl

  • Lim, Hee-Kyung;Kim, Young-Mi;Lee, Dong-Heon;Kahng, Hyung-Yeel;Oh, Duck-Chul
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.168-176
    • /
    • 2001
  • Five different types of catalases from photosynthetic bacterium Rhodospirillum rubrum S1 grown aerobically in the dark were found in this study, and designated Catl (350 kDa), Cat2 (323 kDa), Cat3 (266 kDa), Cat4 (246 kDa), and Cat5 (238 kDa). Analysis of native PAGE revealed that Cat2, Cat3, and Cat4 were also produced in the cells anaerobically grown in the light. It is notable that only Cat2 was expressed much more strongly in response to the anaerobic condition. Enzyme activity staining demonstrated that Cat3 and Cat4 had bifunctional catalase-peroxidase activities, while Catl, Cat2, and Cat5 were typical monofunctional catalases. S1 cells grown aerobically in the presence of malate as the sole source of carbon exhibited an apparent catalase Km value of 10 mM and a Vmax of about 705 U/mg protein at late stationary growth phase. The catalase activity of Sl cells grown in the anaerobic environment exhibited a much lower Vmax of about 109 U/mg protein at late logarithmic growth phase. The catalytic activity was stable in the broad range of temperatures (30$\^{C}$-60$\^{C}$), and pH (6.0-10.0). R. rubrum S1 was much more resistant to H$_2$O$_2$in the stationary growth phase than in the exponential growth phase regardless of growth conditions. Cells of stationary growth phase treated with 15 mM H$_2$O$_2$for 1 h showed 3-fold higher catalase activities than the untreated cells. In addition, L-glutamate induced an 80-fold increase in total catalase activity of R. rubrum S1 compared with magic acid. Through fraction analyses of S1 cells, Cat2, Cat3, Cat4 and Cat5 were found in both cytoplasm and periplasm, while Catl was localized only in the cytoplasm.

  • PDF

Role of a Third Extracellular Domain of an Ecotropic Receptor in Moloney Murine Leukemia Virus Infection

  • Bae Eun-Hye;Park Sung-Han;Jung Yong-Tae
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.447-452
    • /
    • 2006
  • The murine ecotropic retroviral receptor has been demonstrated to function as a mouse cationic amino acid transporter 1(mCAT1), and is comprised of multiple membranespanning domains. Feral mouse (Mus dunni) cells are not susceptible to infection by the ecotropic Moloney murine leukemia virus (MoMLV), although they can be infected by other ecotropic murine leukemia viruses, including Friend MLV and Rauscher MLV. The relative inability of MoMLV to replicate in M. dunni cells has been attributed to two amino acids $(V_{214}\;and\;G_{236})$ located within the third extracellular loop of the M. dunni CAT1 receptor (dCAT1). Via the exchange of the third extracellular loop of the mCAT1 cDNA encoding receptor from the permissive mouse and the corresponding portion of cDNA encoding for the nonpermissive M. dunni receptor, we have identified the most critical amino acid residue, which is a glycine located at position 236 within the third extracellular loop of dCAT1. We also attempted to determine the role of the third extracellular loop of the M. dunni CAT1 receptor with regard to the formation of the syncytium. The relationship between dCAT1 and virus-induced syncytia was suggested initially by our previous identification of two MLV isolates (S82F in Moloney and S84A in Friend MLV), both of which are uniquely cytopathic in M. dunni cells. In an attempt to determine the relationship existing between dCAT1 and the virally-induced syncytia, we infected 293-dCAT1 or chimeric dCAT1 cells with the S82F pseudotype virus. The S82F pseudotype virus did not induce the formation of syncytia, but did show increased susceptibility to 293 cells expressing dCATl. The results of our study indicate that S82F-induced syncytium formation may be the result of cell-cell fusion, but not virus-cell fusion.

Expression and Activity of Catalases Is Differentially Affected by GpaA (Ga) and FlbA (Regulator of G Protein Signaling) in Aspergillus fumigatus

  • Shin, Kwang-Soo;Yu, Jae-Hyuk
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.145-148
    • /
    • 2013
  • Vegetative growth signaling of the opportunistic human pathogenic fungus Aspergillus fumigatus is mediated by GpaA ($G{\alpha}$). FlbA is a regulator of G protein signaling, which attenuates GpaA-mediated growth signaling in this fungus. The flbA deletion (${\Delta}flbA$) and the constitutively active GpaA ($GpaA^{Q204L}$) mutants exhibit enhanced proliferation, precocious autolysis, and reduced asexual sporulation. In this study, we demonstrate that both mutants also show enhanced tolerance against $H_2O_2$ and their radial growth was approximately 1.6 fold higher than that of wild type (WT) in medium with 10 mM $H_2O_2$. We performed quantitative PCR (qRT-PCR) for examination of mRNA levels of three catalase encoding genes (catA, cat1, and cat2) in WT and the two mutants. According to the results, while levels of spore-specific catA mRNA were comparable among the three strains, cat1 and cat2 mRNA levels were significantly higher in the two mutants than in WT. In particular, the ${\Delta}flbA$ mutant showed significantly enhanced and prolonged expression of cat1 and precocious expression of cat2. In accordance with this result, activity of the Cat1 protein in the ${\Delta}flbA$ mutant was higher than that of $gpaA^{Q204L}$ and WT strains. For activity of the Cat2 protein, both mutants began to show enhanced activity at 48 and 72 hr of growth compared to WT. These results lead to the conclusion that GpaA activates expression and activity of cat1 and cat2, whereas FlbA plays an antagonistic role in control of catalases, leading to balanced responses to neutralizing the toxicity of reactive oxygen species.

STUDY CYTOCHROME P450IA1 GENE EXPRESSION BY RTPCR.

  • Lee, Soo-Young;Yhun Y. Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.128-128
    • /
    • 1995
  • To investigate the mechanism of the regulation of cytochrome P450IA1 gene expression, ethoxyresorufin deethylase(EROD) and benzo(a)pyrene hydroxylase in B6 mouse liver, in isolated perfused rat liver system. and in B6 mouse hepatocyte Hepa-I cells were examined. In C57BL/6N mouse, 3-methylcholan- throne( 3MC ) treatment have resulted in the stimulation of EROD activity based on fluorometry by 2.79 fold comparirng with that of control. Measurement of mRNA of cytochrome P450 was carried out by either nothern blot or dot blot analysis. Findings are similar to that of studies with enzymes. Furhtermore, when RTPCR method was applied to detect mRNA in Hepa I cell and liver tissues the results were more clear. Cytochrome P450IA1 upstream DNA containing CAT construct was transfected into Hepa-1 cells. After transfection of CAT construct, 3MC and flavonoids, such as, chrysin, hesperetin, kaempferol, morin, myricetin and aminoyrine were treated. 48 Hours after treatments, cells were harvested and assayed for CAT mRNA by RTPCR. 3MC treatment to hepa I cells transfected with trout P450IA1-CAT construct increased CAT mRNA by 2.81 fold when it was compared with that of control. This increase CAT mRNA was decreased by concomitantly treated flavonoids and aminopyrine. The level of CAT protein was 29.2-58.0% of 3MC stimulated CAT protein. Results of this study suggested that RTPCR seems to be a very good method to study regulation of gene expression in liver tissue or Hepa cells.

  • PDF

Investigation of the Relationship between Protein, Message and Inducer Concentrations in Recombinant E. coli Cells

  • Jorgensen, Lene;Connor J. Thomas;Brian K. Oneill;Anton P.J. Middelbeg
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.21-24
    • /
    • 1997
  • Chloramphenicol acetyl transferase (CAT) protein and mRNA levels in E. coli were determined following induction of a tac::cat construct by isopropyl-${\beta}$-thiogalactopyranoside (IPTG). High cat mRNA levels did not directly reflect CAT protein levels, in either shakeflask experiments or fermentations. Furthermore, concentrations of IPTG resulting in the highest levels of expression of cat mRNA, were different to those resulting in highest levels of CAT protein. The data suggest that high transcriptional activities lead to limitations at the translational level.

  • PDF