• Title/Summary/Keyword: Casting defects

Search Result 191, Processing Time 0.023 seconds

A Study on Optimum Reheating Process of Automotive Aluminum Piston using Neural Network and the Taguchi Method in Semi-Solid forming (반용융 성헝에서의 다구찌 방법과 신경망을 이용한 자동차 알루미늄 피스톤의 최적 재가열 과정에 대한 연구)

  • 윤재민;김영호;박준홍;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.902-905
    • /
    • 2000
  • As the manufacturing processes of automotive engine piston, gravity die-casting, squeeze casting, hot forging and powder forging process are generally used for the various specifications. As the semi-solid forming(SSF) is compared with conventional casting such as gravity die-casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. In SSF process, the materials are heated up to the temperature between the solvus and liquidus line at which the materials exists in the form of liquid-solid mixture. In this time, Discussion is given about reheating process of row material and results are presented regarding accurate temperature and process variables controlling for right solid fractions.

  • PDF

A Study on the Optimal Design and Forming of the Alternator Housing

  • Han, Kyu-Taek;Park, Jung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.361-366
    • /
    • 2004
  • The die casting process was used to manufacture an automotive alternator housing. Generally automobile parts are required to be light and have high strength. The control of casting defects is important but has usually been depended only on the experience of the foundry engineer. Therefore simulations have been carried out on the die casting process of alternator housing. In this paper. we investigated the characteristics of the die casted alternator housing with the HPDC(High Pressure Die Casting) process. We presented the results of filling behavior and solidification process of the cast, The analysis results obtained from the filling behavior and solidification of cast agreed with test results.

Characteristics of Rail head Upbringing Welding using CH-90 Electrode (CH-90 용접봉을 이용한 레일 두부 육성용접의 특성)

  • Lee, Bo-Yeong;An, Dae-Hwan;Kim, Jae-Seong;Ryu, Deok-Hui;Jin, Hyeong-Guk;Gwon, Ho-Jin
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.177-179
    • /
    • 2005
  • As rail steel at a crossing area must undergo much higher loading than those at regular railway, Mn-containing casting steel is normally used for its high load-carrying capability and reduced wear rate. However, as these Mn-containing casting steel is tend to have casting defects, manufacturing cost to produce defect-free Mn-containing casting steel becomes quite expensive. Therefore, in order to investigate the possibilities of replacing expensive Mn-containing casting steel with a mild steel with a surface build-up using a Mn-alloyed steel electrode.

  • PDF

Application of Commercial FEM Code to Coupled Analysis of Casting Deformation (범용 구조해석 프로그램의 주물 열변형 해석에의 적용성)

  • Kim, Ki-Young;Kim, Jung-Tae;Choi, Jung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.192-199
    • /
    • 2002
  • Dimensional defects of castings are mainly due to the stresses and strains caused by a nonuniform temperature distribution and phase transformation during solidification and cooling, and by mechanical constraint between the mold and casting. It is, however, nearly impossible to trace movements of the casting and mold during solidification and cooling by experimental measurements for castings with complex shape. Two and three dimensional deformation analyses of the casting and the mold were performed using commercial finite element code, MARC. It was possible to calculate deformation and temperature distribution in the casting and mold simultaneously. Cooling curves of the casting obtained by calculation were close to that measured in the field since it was possible to treat latent heat evolution of the casting which could be divided into two parts, primary and eutectic parts. Mold bent inward just after pouring due to the temperature gradient across the mold thickness, and mold returned to its previous position with time. Plastic deformation occurred at the part of the casting where solidification was slow.

Case Study for Casting Design of Automobile Part(Gear Box) Using CAE (CAE를 이용한 자동차용 부품(Gear Box)의 주조방안 설계에 대한 사례연구)

  • Kwon, Hongkyu;Jang, Moo-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.179-185
    • /
    • 2012
  • When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize casting design of an automobile part (Gear Box) Computer Aided Engineering (CAE) was performed by using the simulation software (Z Cast). The simulation results were analyzed and compared with experimental results. During the mold filling, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system. For making a better production die casting tool, cooling systems on several thick areas are proposed in order to reduce internal porosities caused by the solidification shrinkage.

THE EFFECT OF SPRUE DESIGN ON THE INTERNAL POROSITY OF TITANIUM CASTINGS (주입선 설계가 티타늄 주조체의 내부기포 발생에 미치는 영향)

  • Heo Sook-Myeong;Jeon Young-Chan;Jeong Chang-Mo;Lim Jang-Seop;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.147-156
    • /
    • 2006
  • Statement of problem: The high melting temperature and chemical reactivity of titanium necessitates casting machines different from those used in conventional casting. Despite the new developments in Ti casting systems , inadequate mold filling and internal porosity are frequently observed casting defects. Therefore, the study on the fabrication technique including sprue design to solve these casting defects is still necessary. Purpose: The purpose of this study was to evaluate the effect of sprue design and cross sectional area of sprue on the internal porosity. Materials and methods: 30 simulated cast three units titanium crowns were prepared. 5 cast crowns for each with different sprue design(sinlge sprue, double sprue and plate sprue) of two cross sectional areas (small and large cross sectional areas) were fabricated. The sections of titanium castings were photographed in a microscope at ${\times}100$ magnification to record internal porosities. Results and Conclusion: Within the limits of this study, the following conclusions were drawn: 1. There was a significantly lower in internal porosity of titanium castings for large cross sectional area of sprue group than the small group (P<.05) 2. There was no significant difference in internal porosity among sprue designs in similar cross sectional area of sprue (P>.05).

Effects of Runner Extension and Ingates on Mold Filling in Ring-type Cast Products (환형주조품의 용탕충진에 미치는 탕도연장부와 주입구 형상의 영향)

  • Park, Kyeong-Seob;Kang, Shin-Wook;Kim, Hee-Soo
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, potential defects of ring-type cast products during the mold-filling stage of the casting process were investigated using computer simulation. The main focus was on the effects of runner extension and ingates. During the mold filling the molten metal flowed from the bottom to the top of the mold in two curved paths along the ring-type cavity. The fluid fronts in the two paths did not show the identical velocity during the mold filling stage. This difference in the filling speeds may cause defects such as voids and local contractions. The present model contained virtual fluid detectors at various positions inside the mold. When the molten metal passed those points, the volume of fluid jumped up from zero to one. The moments were measured to compare the speeds of the fluid fronts. We attempted various combinations of runner extensions and ingates to stabilize the flow and then to optimize the casting mold design.

Study on Effects of Foam-Filter for Reduction of Air-Trapping in Large-Size Sand Gravity Casting (대형 중력주물품의 기공발생 저감을 위한 다공성 필터 (Foam-Filter) 적용효과 분석)

  • Yu, Jae Hyun;Lee, Ho Rim;Joo, Jeong A;Hwang, Yun Je;Shin, Bo Sung;Park, Sang Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.469-475
    • /
    • 2016
  • In this work, casting processes, such as filling and solidification, were simulated in order to accurately predict volume shrinkage defects in large-sized sand gravity casting. Turbulent flow of melted materials and a difference of solidification speed can cause volume shrinkage defects. In order to solve this problem and to understand the phenomenon, a porous filter application was studied. Two different porosities of 10 and 20 p.p.i filters were introduced into the gating system, and in view of the results so far achieved, the defect was dramatically reduced by 22%, compared to that without the use of the filter.

Overflow Design Methods of Family Mold for Rotor Using the Flow and Solidification Simulation (유동 및 응고 시뮬레이션을 활용한 회전자 패밀리 금형의 오버플로우 설계 방안)

  • Jung, J.M.;Kim, C.W.;Nguyen, V.T.;Lee, K.M.;Kuk, J.M.;Jin, H.G.;Hong, S.K.
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.204-209
    • /
    • 2013
  • The family mold casting have advantages which are able to make products with different shapes and dimensions simultaneously in a single mold. In this study, the design of the 4 cavity rotor family mold was used by "Anycasting" software, the defects occurred during die casting were predicted and suggested the best optimization conditions for sound products. The result of the experiment were that the optimum overflow design was needed for gas emission and control of residual oxides. It was clear that the defects positions formed by diecasting were agreed with nearly them predicted by simulation.

Casting Layout Design Using CAE Simulation : Automotive Part(Oil Pan_BR2E) (CAE을 이용한 주조방안설계 : 자동차용 부품(오일팬_BR2E))

  • Kwon, Hong-kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.