• Title/Summary/Keyword: Casting analysis

Search Result 758, Processing Time 0.025 seconds

Thermal Analysis of Continuous Casting Mold (연속주조 몰드의 열해석)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.77-83
    • /
    • 1998
  • This study is object to thermal analysis of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting mold. For thermal analysis using analysis result from FEM code. In other to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition re considered.

  • PDF

Thermal Analysis of Continuous Casting Nickel-Coated Mold (니켈도금된 연속주조 몰드의 열해석)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.287-292
    • /
    • 1999
  • This study is object to thermal analysis of continuous casting nickel-coated mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting nickel-coated mold. For thermal analysis using analysis result from FEM code. In other to thermal analysis of continuous casting nickel-coated mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Thermal Analysis of Continuous Casting Mold (연속주조 몰드의 열해석)

  • 조동현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.43-49
    • /
    • 1999
  • This study is object to thermal analysis of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting mold. For thermal analysis using analysis result from FEM code. In order to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Structural Analysis of Continuous Casting Mold (연속주조 몰드의 구조해석)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.281-286
    • /
    • 1999
  • This study is object to structural analysis of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, stress and strain behavior for continuous casting mold. For structural analysis using thermal analysis result from FEM code. In other to structural analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Structural Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 구조해석 비교)

  • 원종진;이종선;홍석주;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.181-187
    • /
    • 2000
  • This study is object to structural analysis comparison of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. For structural analysis using thermal analysis result from ANSYS. In other to structural analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Thermal Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 열해석 비교)

  • 원종진;이종선;윤희중;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.200-205
    • /
    • 2000
  • This study is object to thermal analysis comparison of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution for continuous casting mold. For thermal analysis using analysis result from ANSYS. In other to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Contact Element Generation Method for Casting Analysis by using Projection Method (Projection Method에 의한 주조 해석용 접촉 요소망 생성 기법)

  • Nam, Jeong-Ho;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.146-150
    • /
    • 2020
  • In general, hot metal castings contract and molds expand during the cooling step of a casting process. Therefore, it is important to consider both the casting and mold at the same time in a casting process analysis. For a more accurate analysis that includes the contact characteristics, matching each node of the casting and mold in the contact area is recommended. However, it is very difficult to match the nodes of the casting and the mold when generating elements due to the geometric problem of CAD model data. The present study proposes a mesh generation technique that considers mechanical contact between the casting and the mold in a casting analysis (finite element analysis). The technique focuses on the fact that the mold surrounds the casting. After generating the 3D elements for the casting, the surface elements of the casting in contact with the mold are projected inside the mold to create contact elements that coincide with the contact surface of the casting. It was confirmed that high-quality contact element information and a 3D element net can be automatically generated by the method proposed in this study.

Structural Analysis of Continuous Casting Mold (연속주조 몰드의 구조해석)

  • 원종진;이종선;홍석주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.104-110
    • /
    • 2001
  • The objective of this study is structural analysis of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. Structural analysis was made using thermal analysis result, utilizing transient analysis of ANSYS. This structural analysis results, many variables such as casting speed, cooling condition film coefficient, convection and load condition are considered.

  • PDF

Residual Stress Measurement of Sand Casting by ESPI Device and Thermal Stress Analysis (ESPI 장비를 활용한 사형 주조품의 잔류응력 측정 및 주조 열응력 해석)

  • Kwak, Si-Young;Nam, Jeong-Ho
    • Journal of Korea Foundry Society
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.

Numerical Analysis of Heat Transfer and Solidification in the Continuous Casting Process of Metallic Uranium Rod (금속 우라늄봉의 연속주조공정에 대한 열전달 및 응고해석)

  • Lee, Ju-Chan;Lee, Yoon-Sang;Oh, Seung-Chul;Shin, Young-Joon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • Continuous casting equipment was designed to cast the metallic uranium rods, and a thermal analysis was carried out to calculate the temperature and solidification profiles. Fluid flow and heat transfer analysis model including the effects of phase change was used to simulate the continuous casting process by finite volume method. In the design of continuous casting equipment, the casting speed, pouring temperature and cooling conditions should be considered as significant factors. In this study, the effects of casting speed, pouring temperature, and air gap between the uranium and mold were investigate. The results represented that the temperature and solidification profiles of continuous casting equipment varied with the casting speed, pouring temperature, and air gap.

  • PDF