• Title/Summary/Keyword: Casting accuracy

Search Result 89, Processing Time 0.024 seconds

Experimental Investigation of Impact-Echo Method for Concrete Slab Thickness Measurement

  • Popovics John S.;Cetrangolo Gonzalo P.;Jackson Nicole D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.427-439
    • /
    • 2006
  • Accurate estimates of in place thickness of early age (3 to 28 days after casting) concrete pavements are needed, where a thickness accuracy of ${\pm}6mm$ is desired. The impact-echo method is a standardized non-destructive technique that has been applied for this task. However, the ability of impact-echo to achieve this precision goal is affected by Vp (measured) and ${\beta}$ (assumed) values that are applied in the computation. A deeper understanding of the effects of these parameters on the accuracy of impact-echo should allow the technique to be improved to meet the desired accuracy goal. In this paper, the results of experimental tests carried out on a range of concrete slabs are reported. Impact-echo thickness estimation errors caused by material property gradients and sensor type are identified. Correction factors to the standard analysis method are proposed to correct the identified errors and to increase the accuracy of the standard method. Results show that improved accuracy can be obtained in the field by applying these recommendations with the standard impact-echo method.

Endo- and Epi-cardial Boundary Detection of the Left Ventricle Using Intensity Distribution and Adaptive Gradient Profile in Cardiac CT Images (심장 CT 영상에서 밝기값 분포와 적응적 기울기 프로파일을 이용한 좌심실 내외벽 경계 검출)

  • Lee, Min-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, we propose an automatic segmentation method of the endo- and epicardial boundary by using ray-casting profile based on intensity distribution and gradient information in CT images. First, endo-cardial boundary points are detected by using adaptive thresholding and seeded region growing. To include papillary muscles inside the boundary, the endo-cardial boundary points are refined by using ray-casting based profile. Second, epi-cardial boundary points which have both a myocardial intensity value and a maximum gradient are detected by using ray-casting based adaptive gradient profile. Finally, to preserve an elliptical or circular shape, the endo- and epi-cardial boundary points are refined by using elliptical interpolation and B-spline curve fitting. Then, curvature-based contour fitting is performed to overcome problems associated with heterogeneity of the myocardium intensity and lack of clear delineation between myocardium and adjacent anatomic structures. To evaluate our method, we performed visual inspection, accuracy and processing time. For accuracy evaluation, average distance difference and overalpping region ratio between automatic segmentation and manual segmentation are calculated. Experimental results show that the average distnace difference was $0.56{\pm}0.24mm$. The overlapping region ratio was $82{\pm}4.2%$ on average. In all experimental datasets, the whole process of our method was finished within 1 second.

Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing (적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구)

  • Jin, Jae-Ho;Kwon, Da-in;Oh, Jae-Hwan;Kang, Do-Hyun;Kim, Kwanoh;Yoon, Jae-Sung;Yoo, Yeong-Eun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

A STUDY ON THE DISTORTION OF THE COPINGS FOR CERAMOMETAL CROWNS DURING REPEATED FIRING (도재전장금관을 위한 코핑의 변형에 관한 연구)

  • Lee, Ki-Hong;Chung, Hun-Young;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.706-718
    • /
    • 1997
  • Ceramometal crowns are common restorations in fixed prosthodontics because of their casting accuracy, the high strength properties of the metal, and the cosmetic appearance of porcelain. However, deterioration of the initial fit of the metal coping has been observed after the porcelain firing cycle. The distortion due to repeated firing makes it difficult to fit crown margin and elicits microleakage. The major causes of distortion are the residual stress that accumulate during wax-up, casting, cold work and the induced stress caused by the mismatch of porcelain-metal thermal contraction. This study examined the marginal fit changes of metal copings in relation to repeated firing and the effects of heat treatment that reduce the distortion resulted from residual stress. The marginal changes of the copings that were treated with conventional method and those treated with heat before repeated firing, were evaluated. The metal die which represented preparations of a maxillary central incisor was fabricated, and 45 wax patterns were cast with nonprecious metal alloys. The heat treatment of each group was performed as follows. Group 1(control) : Casting - Devesting - Cold work - Firing Group 2 : Casting - Heat treatment - Devesting - Cold work - Firing Group 3 : Casting - Devesting - Cold work - Reinvesting - Heat treatment - Devesting - Firing The copings were fired 3 times. After each firing, the marginal fit changes were measured with inverted metallurgical microscope at the 4 reference points located at labial, lingual, and both proximal surface. Measurements were compared, and statistically analyzed. The results were as follows ; 1. In all groups, the highest value of marginal fit changes of the copings studied were found after the first firing cycle. 2. When the distortion of each experimental group at the first firing cycle were compared, group 1 exhibited the greatest changes($20-27{\mu}m$), followed by group 2($9-13{\mu}m$), and group 3($8-10{\mu}m$). 3. The copings treated with heat before devesting(group 2) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 4. The copings treated with heat after reinvesting(group 3) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 5. No siginificant differences in marginal fit changes were found between the copings treated with heat before devesting(group 2) and the copings treated with heat after reinvesting(group 3). (p>0.01)

  • PDF

Coastal Wave Hind-Casting Modelling Using ECMWF Wind Dataset (ECMWF 바람자료를 이용한 연안 파랑후측모델링)

  • Kang, Tae-Soon;Park, Jong-Jip;Eum, Ho-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.599-607
    • /
    • 2015
  • The purpose of this study is to reproduce long-term wave fields in coastal waters of Korea based on wave hind-casting modelling and discuss its applications. To validate wind data(NCEP, ECMWF, JMA-MSM), comparison of wind data was done with wave buoy data. JMA-MSM predicted wind data with high accuracy. But due to relatively longer period of ECMWF wind data as compared to that of JMA-MSM, wind data set of ECMWF(2001~2014) was used to perform wave hind-casting modelling. Results from numerical modelling were verified with the observed data of wave buoys installed by Korea Meteorological Administration(KMA) and Korea Hydrographic and Oceanographic Agency(KHOA) on offshore waters. The results agree well with observations at buoy stations, especially during the event periods such as a typhoon. Consequently, the wave data reproduced by wave hind-casting modelling was used to obtain missing data in wave observation buoys. The obtained missing data indicated underestimation of maximum wave height during the event period at some points of buoys. Reasons for such underestimation may be due to larger time interval and resolution of the input wind data, water depth and grid size etc. The methodology used in present study can be used to analyze coastal erosion data in conjunction with a wave characteristic of the event period in coastal areas. Additionally, the method can be used in the coastal disaster vulnerability assessment to generate wave points of interest.

Development of Furan Mold Design and Machining System for Marine Propeller Casting (선박용 프로펠러 후란주형 설계 및 가공 시스템 개발)

  • Park, Jung Whan;Jung, Chang Wook;Kwon, Yong Seop;Kang, Sung Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.121-128
    • /
    • 2016
  • A furan mold design and machining system for marine propeller casting was developed. In general, a large marine propeller is produced by casting in a foundry, where the upper and lower molds are constructed of cement or other materials like furan. Then, the cast workpiece is machined and manually ground. Currently, furan mold construction requires a series of manual tasks. This introduces a fairly large amount of stock allowances, which require a considerable number of man-hours for later machining and grinding, and also increase the work processes. A mold design and off-line robot programming software tool with a six-axis robot hardware system was developed to enhance the shape accuracy and productivity. This system will be applied in a Korean ship building company.

Research on the Adhesion of Flexible Copper Clad Laminates According to Species of Polyimide (폴리이미드 종류에 따른 연성 동박 적층판의 부착력 연구)

  • Lee Jae Won;Kim Sang Ho
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.2
    • /
    • pp.49-54
    • /
    • 2005
  • Flexible copper clad laminates (FCCL) fabricated by sputtering has advantages in fine pitch etching and dimensional accuracy than previous casting or laminating type FCCL, But its lower adhesion is inevitable technical challenge to solve for commercializing it. Chromium (Cr) which strongly reacts with O moiety was used as tie-coating layer in order to improve low adhesion between copper (Cu) and polyimide (PI). Sputtering raw polyimide (SRPI) and casting raw polyimide (CRPI) were used as substrates at this research. PI was pretreated by plasma before sputtering, and each sample was varied with RF power and Cr thickness on sputtering. Peel strength of the FCCL on SRPI was higher than that on CRPI. Adhesion had maximum value when 10 nm of Cr was deposited on SRPI by RF power of 50 W. It seems to be by the formation of Cu-Cr-O solid solution at the metal-PI interface.

The Verification of Accuracy of 3D Body Scan Data - Focused on the Cyberware WB4 Whole Body Scanner - (3차원 인체 스캔 데이터의 정확도 검증에 관한 연구 - Cyberware의 WB4 스캐너를 중심으로 -)

  • Park, Sun-Mi;Nam, Yun-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.1
    • /
    • pp.81-96
    • /
    • 2012
  • The purpose of this study is to provide fundamental information for standardization of 3D body measurement. This research analyzes errors occurring in the process of extracting body size from 3D body scan data. First, as a result of analyzing basic state of the 3D body scanner's calibration, the point number of each section was almost the same, while the right and left as well as the front and back coordinates of the center of gravity are not, showing unstable data. Nevertheless, the latter does not influence on the size of cylinder such as width and circumference. Next, we analyzed point coordinates variations of scan data on a mannequin nude by life casting. The result was great deflection in case of complicated or horizontal sections including the reference point beyond proper distance from centers of four cameras. In case of the mannequin's size, accuracy proves comparatively high in that measurement errors in height, width, depth, and length dimension occurred all within allowable errors, only except chest depth, while there were a lot of measurement errors in a circumference dimension. Secondly, analysis of accuracy of automatic extraction identification program algorithm presented that a semi-automatic measurement program is better than an automatic measurement program. While both of them ate very acute in parts related to crotch, they are not in armpit related parts. Therefore, in extracting of human body size from 3D scan data, what really matters seems to parts related to armpits.

  • PDF

Shipping Container Load State and Accident Risk Detection Techniques Based Deep Learning (딥러닝 기반 컨테이너 적재 정렬 상태 및 사고 위험도 검출 기법)

  • Yeon, Jeong Hum;Seo, Yong Uk;Kim, Sang Woo;Oh, Se Yeong;Jeong, Jun Ho;Park, Jin Hyo;Kim, Sung-Hee;Youn, Joosang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.411-418
    • /
    • 2022
  • Incorrectly loaded containers can easily knock down by strong winds. Container collapse accidents can lead to material damage and paralysis of the port system. In this paper, We propose a deep learning-based container loading state and accident risk detection technique. Using Darknet-based YOLO, the container load status identifies in real-time through corner casting on the top and bottom of the container, and the risk of accidents notifies the manager. We present criteria for classifying container alignment states and select efficient learning algorithms based on inference speed, classification accuracy, detection accuracy, and FPS in real embedded devices in the same environment. The study found that YOLOv4 had a weaker inference speed and performance of FPS than YOLOv3, but showed strong performance in classification accuracy and detection accuracy.

Sensitivity and accuracy for rheological simulation of cement-based materials

  • Kim, Jae Hong;Jang, Hye Rim;Yim, Hong Jae
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.903-919
    • /
    • 2015
  • The flow of freshly mixed cement-based material shows thixotropy, which implies some difficulties on robust measurement of its rheological properties: The flow curve of thixotropic materials depends on the used protocol. For examples, higher viscosity is obtained when the rate of shear strain is more quickly increased. Even though precise measurement and modelling of the concrete rheology needs to consider the thixotropic effect, engineers in the concrete field prefer considering as a non-thixotropic Herschel-Bulkley fluid, even more simply Bingham fluid. That is due to robustness of the measurement and application in casting process. In the aspect of simplification, this papers attempts to mimic the thixoropic flow by the non-thixotropic Herschel-Bulkley model. Disregarding the thixotropy of cement based materials allows us to adopt the rheological concept in the field. An optimized protocol to measure the Bingham parameters was finally found based on the accuracy and reproducibility test of cement paste samples, which minimizes the error of simulation stemming from the assumption of non-thixotropy.