• Title/Summary/Keyword: Casting Structure

Search Result 444, Processing Time 0.029 seconds

Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy (급속응고한 Al-Be합금의 미세조직 및 인장특성)

  • Lee, In-Woo;Park, Hyun-Ho;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF

Effect of Foaming Temperature on Cell Structure of 606X Series Aluminum Alloy Metallic Foams (Foaming 온도에 따른 606X계 발포 알루미늄의 제조 특성)

  • Song, Yeong-Hwan;Park, Soo-Han;Jeong, Min-Jae;Kang, Kwang-Jung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Metal foam is one of the most interesting materials with various multi-functional properties such as light weight, energy absorption, high stiffness and damping capability. Among them, energy absorption property has keen interests in the field of automotives for passenger protection. Nowadays, researches about pore size and porosity control of the foam are increased to correspond them. However, though energy absorption properties are improved, these results are not cost-effective process. In present research, however, as a part of improving the energy absorption property of metallic foams, 606X aluminum alloy was used for cell wall material which has higher strength than pure aluminum. And its morphological features are characterized. As a results, porosity and pore size are uniformity distribution with increasing foaming temperature in the case of 6061 alloy foams. 6063 alloy foam specimens have opposite tendency because of the influence of alloying element and viscosity of the molten melt.

Electrical Properties of Tape-Cast Zirconia Thin Plates with the Mixing Ratios of $3Y-ZrO_2$ and $8Y-ZrO_2$ Powders ($3Y-ZrO_2$$8Y-ZrO_2$ 분말의 혼합비율에 따른 테이프 캐스트된 지르코니아 박판의 전기적 성질의 변화)

  • 김선재;강대갑;김경호;정충환;박지연
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.969-974
    • /
    • 1994
  • After adding 8Y-ZrO2 powders to 3Y-ZrO2 powders at ratios of 0, 33, 50, 67, and 100% by weight, the mixed yttria-stabilized zirconia specimens were fabricated into thin plate using tape~casting method and then sintered at 150$0^{\circ}C$ for 4h in air. The crystalline structure, microstructure and electrical properties of the sintered zirconia thin plates were investigated by using X-ray diffractometer, scanning electron microscope and impedance analyser, respectively. At the temperatures higher than 75$0^{\circ}C$, the sintered thin plate with 33% 8Y-ZrO2 content shows higher mechanical properties and lower electrical resistivity than 8Y-ZrO2 thin plate which is generally used as an electrolyte for solid oxide fuel cells. This is due to the fact that the zirconia thin plates with low 8Y-ZrO2 content maintain the slope of low temperature region up to high temperatures, whereas at temperatures higher than 50$0^{\circ}C$ the slope decrease in the zirconia thin plates with high 8Y-ZrO2 content.

  • PDF

Analysis of Strengthening Structures of Steel Manhole Cover (강재 맨홀뚜껑의 보강구조 해석)

  • Kim, Heung-Kyu;Yang, Young-Soo;Bae, Kang-Yul
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.54-62
    • /
    • 2014
  • Manhole cover, which is usually made of grey cast iron and consists of frame and cover, should have enough strength to support the heavy traffic load. The manhole cover made of cast iron has heavy weight to handle manually and is vulnerable to impact force with its brittle characteristics. Moreover, its production process of casting has been regulated in terms of environmental pollution. In this study, steel manhole cover is proposed to substitute the cast cover with a series of structural analyses to confirm its strength to support the test load for manhole cover. The cover of the proposed steel manhole cover is made of thin circular pate and stiffeners below the plate. Rectangular columns and hollow circular plate were selected for the shape of the stiffener. In order to give enough strength for the cover to behave within elastic range in the loading, strengthening structures of the cover were varied with increasing the number and the size of the stiffeners. The results of the analyses revealed that when both the hollow circular stiffener and cross stiffeners were additionally applied at the same time to the steel cover with longitudinal stiffeners, the maximum stress level in the cover could be reduced to that level presented in the cast cover.

Microstructural and Mechanical Characteristics of A356 Alloy Cast by Semi-Solid Squeeze Process (반응고 공정 가압 주조한 A356합금의 미세조직 및 기계적 특성)

  • Kim, Sug-Won;Kang, Yeun-Cheul;Kim, Dong-Kun;Kumai, Sinji
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2000
  • So far, the study on semi-solid process has been carried out to develop and research new advanced materials without some casting defects. In this study, A356 billets consisted of various dendritic shapes were prepared using electro-magnetic stirring process continuously. As-cast respectively has liquidus temperature of $625.6^{\circ}C$ and solidus temperature of $573.55^{\circ}C$ A356 slugs were reheated homogeneously at different temperatures of 580, 590 and $605^{\circ}C$, followed by squeezing in a mold insulated with applied pressures(0, 25, 50 and 70 MPa). In order to investigate on aging responce for casts, 50 MPa squeezed specimen among all specimens was prepared in aging treatments, which conditions are aging temperature of $160^{\circ}C$ and holding times of 0, 45, 90, 270, 360, 720, 1440 and 2880 min after solution treatment ($540^{\circ}C$ for 10 hr). SSM ingot with the output velocity of 150mm/min appeared more spheroidal shape and fine structure than that with the output velocity of 250 mm/min. According to increasing in reheating temperature, numbers of fatigue cycles, U.T.S and elongation increased at same time.

  • PDF

Application of Bulk Talc to Molding Material (주형재료로서 덩어리 활석의 이용)

  • Ha, Man-Jin;Lee, Zin-Hyoung;Lee, Sang-Soo;Eun, Hee-Joon
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 1994
  • The possibility of using bulk talc as molding material was reviewed and tested with the measurement of thermal properties and computer simulations. The measured thermal conductivity and heat diffusivity($k{\rho}c$) of talc were $2.4W/m^{\circ}C$ and $6.6{\times}10^6J^2/m^4^{\circ}C^2s$, respectively. Thermal properties of talc could be ranked between those of sand mold and iron mold. Talc transforms into cristobalite and enstatite at $910^{\circ}C$, During the transformation volume and structure change, cracks appear on the surface and distortion occurs. Therefore talc can be used for molding material below $910^{\circ}C$ if carefully treated. Computer simulation was carried out to test whether talc insert could promote directional solidification in sand mold and iron mold. In sand mold, it was possible to achieve directional solidification of thin plate casting with the length to thickness ratio of 15, if both iron insert and talc insert were used. In iron mold, it was possible to achieve directional solidification only with talc insert.

  • PDF

Mechanical Properties of Austempered Fe-2.0wt.%Si-0.3wt.%Mn Steel with various Carbon Contents (탄소함량 변화에 따른 오스템퍼드 Fe-2.0wt.%Si-0.3wt.%Mn 강의 기계적 성질)

  • Ha, Jong-Gyu;Shin, Sang-Yun;Lee, Do-Hoon;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, we investigated the effect of carbon on mechanical properties with different austempering conditions of high carbon(0.7~1.3wt.%C)-2.0wt.%Si steels. The specimens were austenitized at 850, 925 and $1020^{\circ}C$, and austempered at 260, 320 and $380^{\circ}C$ for the various period of time from 3 min to 300 min. After heat treatment, the evolution of stage I and stage II was identified with optical microscope, XRD and hardness test. When the austempering temperature was $260^{\circ}C$, the microstructure consisted of the lower ausferrite while the upper ausferrite micro-structure was formed at $380^{\circ}C$. As the austempering temperature increases from 260 to $380^{\circ}C$, the tensile strength decreases and elongation increases. In addition, when carbon content increases, tensile strength and elongation decrease.

Aging Phenomena of Multilayered PMN-PZT Ceramic Actuator (적층형 PMN-PZT 세라믹 압전 액추에이터의 열화특성)

  • Song, Jae-Sung;Jeong, Soon-Jong;Kim, In-Sung;Lee, Won-Jae;Lee, Dong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.445-449
    • /
    • 2005
  • Aging phenomena of 0.2PMN-0.8PZT multilayered ceramic actuators(MCA) have been investigated at the room temperature. The piezoelectric materials were synthesized as conventional ceramic process, and MCA were fabricatedby tape casting methods. The crystalline structures and lattice parameters were investigated by X-ray diffraction analysis, showing the structure was tetragonal and c/a was about 1.01. And, the effective electromechanical coupling coefficient keff and pseudo-piezoelectric constant $d_{33}$were measured. Variable unipolar electric fields, $2{\sim}4kV/mm$, were applied to MCh to investigate the aging characteristics. After 2 kV/mm unipolar electric field, keff and $d_{33}$ were 0.454 and 4.44 respectively. The measured and simulated values using for aging phenomena analysis, had a good fit to the linear logarithmic stretched exponential law.

The Influence of Shield Gas Ratio on the Toughness of Al5083-O GMA Welding Zone (Al5083-O GMA 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;조상곤;김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -$85^{\circ}C$ , and the maximum load and maximum displacement were shown the highest and the lowest at -$196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the other specimens were shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

A Optimizing Study on maximizing the earning power of casting industry production through TPI (주물 산업의 수익력 극대화를 위한 생산부문의 TPI 최적화 연구)

  • Kang, Byong-Rho;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • The production type of foundry industry is a small quantity batch production methods that require the highly skilled technology in the global competition in the variety of customer needs and directly under the influence of fluctuations characteristic. Therefore suitability for small quantity batch production and flexible production capacity and price competitiveness is needed more than anything. To do this, we need transcription and comprehensive innovation activities to maximize the revenue structure of the organization and field survival foundation should be developed the TPI(Total Profit Innovation) process in all aspects of the organization and all employees are involved in order to create a cost, quality, time, and service part of the overall aim how to achieve those effects within a short period of time. We applied the TPI process for S company in the foundry business innovation and productivity through cost reduction. We will expect the productivity improvement and financial performance improvement and then continually accumulate and review the results.