• Title/Summary/Keyword: Cast-Forging

Search Result 60, Processing Time 0.022 seconds

Tensile Behavior of Cast-Forged Al-Si-Mg Alloy (주/단조 Al-Si-Mg 합금의 인장 거동)

  • Kim K. J.;Kwon Y.-N.;Lee Y. S.;Jeong S. C.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.329-332
    • /
    • 2004
  • Cast-forging process has a lot of advantages in terms of saving materials along with enhancement of mechanical properties. Therefore, this process has been taken as one of candidate process to manufacturing automotive suspension parts. Since most of cast-forging parts are made with using Al-Si alloys of high castability, the mechanical properties largely depends on the primary ${\alpha}$ and eutectic Si particles. During hot forging step these microstructural features evolve with strain increment. In the present study, the mechanical property evolution was investigated in terms of microstructual evolution with strain. Specially, fracture behavior of A356 alloy was studied to find out how to improve the mechanical properties.

  • PDF

FEM Analysis on Cavity Closure Behavior during Hot Open Die Forging Process (열간 자유단조시 내부 공극 압착 거동에 관한 유한요소해석)

  • Lee, Y.S.;Kwon, Y.C.;Kwon, Y.N.;Lee, S.W.;Kim, N.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.50-52
    • /
    • 2007
  • Large size forged parts usually were made by hot open die forging because of the die cost, high applied load and small manufacturing quantities. Cast ingots were used in open die forging and the ingots almost included the cavities in its inside. Therefore, one of the aims for forging processes is to close and remove the cavities. However, its criteria were well not defined since the studies have many difficulties to investigate the cavity behaviors because of its large size. In this study, the cavity closure behavior was investigated by experimental and FE analysis. The FEM analysis is performed to investigate the overlap defect of cast ingots during free forging stage. The measured flow stress data were used to simulate the forging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}$-3D. The calculated results of cavity closure behavior are compared with the measured results before and after forging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

  • PDF

Plastic Deformation Behavior of Al6061 depending on Heat Treatment Condition (연속주조 Al6061 합금의 열처리에 따른 소성변형거동)

  • Park J. H.;Kwon Y. N.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.127-130
    • /
    • 2004
  • In the recent years, lightweight components fabricated with aluminum alloys have been applied into building the automobiles. Among the several competing fabrication methods, hot forging is taken as the most reliable technique to produce suspension parts such as control arms. Generally, Al forging products have been used widely for the aircraft building with the extruded stock as a starting material. For the economical base, however, the cast stocks turn to be as the forging stocks recently after a continuously casting technique was developed to produce quite a uniform microstructure enough to use for the forging process. Even more, there is a tendency to omit the homogenization step before forging, which is considered to be an indispensable process for all kinds of Al alloy, In the present study, a series of compression test was carried out to find out how the cast structure and the following heat treatments influence the deformation behavior, that is, forging characteristic.

  • PDF

A study on the Microstructural Changes with Modification and Cast-forging in Hypoeutectic Al-Si Alloys (아공정 Al-Si 합금의 개량처리와 주단조에 의한 조직변화에 관한 연구)

  • Yoon, Ji-Hyun;Seol, Eun-Cheol;Kim, Eok-Soo;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.26-34
    • /
    • 2002
  • For application of cast-forging process with Al-Si alloys, casting experiments are carried out by adding Sr and TiB to Al-Si alloys for grain refinement treatment. We experimented on the mechanical properties according to microstructural changes, forging ability test and also investigated the mechanical properties after forging. The finest microstructure could be observed respectively when 0.05 wt.%Sr and 0.1 wt.%TiB were added. In this case, tensile strength and elongation increased much more than as casting. After high temperature deformation simulation test with grain refinement specimens was carried out, about 60N per unit $area(mm^2)$ of specimen was confirmed. After hot forging, tensile strength and elongation were increased. It was considered that casting defect was removed by compressive working.

On prediction temperature and microstructure change in large cast-forged product (대형 주.단조품의 온도 및 조직변화 예측에 관한 연구)

  • Lee, M.W.;Lee, Y.S.;Lee, S.W.;Kim, S.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.414-419
    • /
    • 2009
  • Good control of thermal energy helps to increase characteristics and eliminate defects of large cast-forged part, such as large sized forged shell. Thermal energy control is a important factor. We have studied about forging process and after heat treatment process by FEM simulation. There are three ways of process. Changes of temperature and microstructure for forged shell were predicted according to temperature declination in large cast-forged product. So we will be able to choose the proper time from heat treatment conditions by FEM simulation.

  • PDF

A Study on the Hot Forging Process Development for an Automotive Aluminum Lower Arm by Computer Aided Engineering (CAE를 활용한 자동차 알루미늄 로어암의 열간단조 공정개발에 관한 연구)

  • Lee K. O.;Park I. W.;Je J. S.;Kim Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.188-191
    • /
    • 2005
  • Lower arm for automobile has been made in steel traditionally. Nowadays steel is being substituted fur aluminum to reduce weight of automobile. Widely applied production method of aluminum component has been casting processes or cast/forging processes. But casting or cast/forging processes have limits of application to parts which is required high strength durability like automotive component. In this research, hot forging process has been adopted to produce aluminum lower arm to ensure required mechanical properties. To reduce production cost, 2 pieces with 1 blow process was developed. Optimization and verification of hot forging process for aluminum lower arm was performed by computer aided engineering using finite volume methods.

  • PDF

A STUDY OF MAGNETIC ALIGNMENT OF DIE-UPSET Pr-Fe-B-Cu MAGNETS

  • Kwon, H.W.;Ma, T.J.;Harris, I.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.416-420
    • /
    • 1995
  • An attempt has been made to investigate the mechanism of magnetic alignment in the magnets produced by upset forging the $Pr_{20}Fe_{74}B_{4}Cu_{2}$ cast bulk alloy. Upset forging of the cast alloy was carried out for 20 sec to an 80 % thickness reduction (strain rate : $4{$\times}10^{-2}s^{-1}$) in an open die configuration at varying temperatures in the range $600^{\circ}-900^{\circ}C$. It has been found that the upset forging process at temperatures above $800^{\circ}C$ can achieve a magnetic alignment to a great extent from copper-containing Pr-Fe- B-type cast ingot. The growth manner of the ferromagnetic $Pr_{2}Fe_{14}B$ matrix grain in Pr-Fe-B-type alloys was studied by examining the morphology change of the matrix grain in sintered body, and it was found that the matrix grains grew in anisotropic manner such that the grain grew more rapidly along the a- or b-axis than along the c-axis. This anisotropic grain growth led to the plate-like shape of the matrix grain. The magnetic alignment during the upset forging was attributed to grain boundary gliding of the plate-like grains, and the geometry of the grains in the cast ingot and the presence of a large amount of the praseodymium-rich grain boundary phase were thought to play a key role in the achievement of magnetic alignment.

  • PDF

The Study on the Hot Forging of a Extruded and Continuously Cast Al 6061 (압출 및 연주 Al 6061 합금의 열간단조 특성 연구)

  • 권용남;박정호;이영선;배명한;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.80-83
    • /
    • 2003
  • Generally, forging process has been known to enhance most of the mechanical properties by developing the continuous metal flow across the forged stocks. However, we have found out that forging of Al 6061 did not always give the enhancement of the mechanical properties but the degradation of the original characteristics, especailly for a extruded Al 6061. There are several candidates for the culprit of this unfavorable phenomenon. We have been trying to clear out the cause of the mechanical degradation of the forged a extruded Al 6061. One of the most plausible causes seems to be that the particles containing Mn and/or Cr is coarsened and redistributed preferencially onto grain boundaries due to a repetitive exposure in an elevated temperature condition. On the other hand, a continuously cast Al 6061 did not show any strength degradation after a hot forging under the same process condition with the extruded Al 6061.

  • PDF

A Study on the Control of Cast Microstructure in the Aluminum Casting/Forging Process (알루미늄 주조/단조 공정에서 주조조직 제어에 관한 연구)

  • Bae, Won-Byong;Kang, Chung-Yun;Lee, Young-Seok;Lee, Sung-Mo;Hong, Chang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.41-47
    • /
    • 1999
  • The scale of dendritic structure of a cast preform plays a key role in determining the mechanical properties of cast/forged products. In this study, casting experiments are carried out to reduce dendrite arm spacing (DAS) to smaller than 20 ${\mu}$m by increasing cooling rate of the mold and then to spheriodize dendritic structures by addition of alloying elements such as Zr and Ti-B. From the casting experiments, appropriate casting conditions for producing the cast preform of a motorcycle connecting rod are obtained. To obtain fine microstructures of the cast preform, mold temperature must set to be low whilst cooling rate being high. When cooling rate is 10 $^{\circ}C$/s, the size of DAS is 17.4 ${\mu}$m. And the degree of spheriodization of a grain in the cast preform is described by aspect ratio, which is defined as the ratio of major and minor radii of an elliptical grain. When 0.5% Zr and 0.24 % Ti+B are added to the molten aluminum alloy, the best aspect-ratio 0.75 is obtained. After forging the cast preform of a motorcycle connecting rod, the microstructure and mechanical properties of the cast preform are compared with those of the cast/forged product. Cast/forged products are superior in microstructure and in mechanical properties such as ultimate strength, elongation, and hardness.

  • PDF

Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials (경량화 소재의 반용융 및 주조/단조기술)

  • 강충길;최재찬;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF