• Title/Summary/Keyword: Cast method

Search Result 828, Processing Time 0.03 seconds

THE INVESTIGATION OF MICROVASCULATURE CHANGES IN OSSEOUS REGENERATION BY GUIDED TISSUE REGENERATION PROCEDURE (골재생유도술에 의한 골재생시 미세혈관 구축 양상)

  • Choi, Du-Hee;Ryoo, Hyun-Mo;Shin, Hong-In
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.3
    • /
    • pp.257-265
    • /
    • 1999
  • To investigate the sequential changes in microvascular architecture and osseous regeneration during the bony healing after an application of the guided tissue regeneration method, we made artificial defects measuring $0.7cm{\times}0.3cm$ in size on femoral bones of rats measuring about 200gm and applied non-absorbable TEFE membrane at experimental sites but not at control sites. Then we observed the sequential changes and correlations between new vacuolation and bony regeneration using microvascular corrosion cast method and routine light microscopic observation at 1, 2 and 3 weeks after operation, respectively. The results showed that there were close relationships between regeneration of microvasculature and bone. In early phase, the invasion of granulation tissue at control sites delayed bony regeneration, however, in later phase, there was no remarkable differences in bony regeneration between control and experimental sites. The placement of barrier also affected in revascularization of regenerating bony defects. This is, the experimental sites showed parallel arranged nutritional vessels along long axis with well developed retiform plexus whereas the control revealed vertical invasion of microvasculature from outside of marrow space through bony defects which was also rearrange with time into parallel pattern with a vertical plexus but lesser organized than that of experimental sites. These findings suggest that the reconstruction of regenerating vasculature within the marrow cavity only may be sufficient and/or more be efficient in regeneration of bony defects.

  • PDF

Establishment of Disposing Method for Dairy Cow Manure by Vermiculture (지렁이를 이용한 젖소분뇨 처리에 관한 연구)

  • 나영은;한민수;이상범;김세근;박형만
    • The Korean Journal of Soil Zoology
    • /
    • v.5 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Disposing technique for dairy cattle manure using earthworms and the possibility of utilizing earthworms in poultry feed were investigated. In addition, chemical properties of manure and cast of earthworms were investigated. Temperature in the vinyl-house for earthworm nursery was able to be maintained above 0$\^{C}$ in winter and 25-28$\^{C}$ in summer. In closed-covering method, the number of escaped earthworms was the highest among three covering methods. The time was longer after manure excretion, the numbers of escaped earthworm were higher. There were some incidences of mortality of earthworm in closed-covering site. The amount of manure ingested by earthworm was increased in order of non-covering, closed-covering and gap-covering method. Fresh manure was more ingested than old one by earthworm. Earthworms reduced manure about 50% on the dry weight base and reduced total amounts of N, P$_2$O$\_$5/ and K$_2$O of manure by 41, 50 and 60%, respectively. Earthworm could be utilized by adult poultry (>60 g) for feeding. However, adverse effect of live earthworm was observed with young poultry (<450 g).

  • PDF

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.

A STUDY ON THE DISTORTION OF THE COPINGS FOR CERAMOMETAL CROWNS DURING REPEATED FIRING (도재전장금관을 위한 코핑의 변형에 관한 연구)

  • Lee, Ki-Hong;Chung, Hun-Young;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.706-718
    • /
    • 1997
  • Ceramometal crowns are common restorations in fixed prosthodontics because of their casting accuracy, the high strength properties of the metal, and the cosmetic appearance of porcelain. However, deterioration of the initial fit of the metal coping has been observed after the porcelain firing cycle. The distortion due to repeated firing makes it difficult to fit crown margin and elicits microleakage. The major causes of distortion are the residual stress that accumulate during wax-up, casting, cold work and the induced stress caused by the mismatch of porcelain-metal thermal contraction. This study examined the marginal fit changes of metal copings in relation to repeated firing and the effects of heat treatment that reduce the distortion resulted from residual stress. The marginal changes of the copings that were treated with conventional method and those treated with heat before repeated firing, were evaluated. The metal die which represented preparations of a maxillary central incisor was fabricated, and 45 wax patterns were cast with nonprecious metal alloys. The heat treatment of each group was performed as follows. Group 1(control) : Casting - Devesting - Cold work - Firing Group 2 : Casting - Heat treatment - Devesting - Cold work - Firing Group 3 : Casting - Devesting - Cold work - Reinvesting - Heat treatment - Devesting - Firing The copings were fired 3 times. After each firing, the marginal fit changes were measured with inverted metallurgical microscope at the 4 reference points located at labial, lingual, and both proximal surface. Measurements were compared, and statistically analyzed. The results were as follows ; 1. In all groups, the highest value of marginal fit changes of the copings studied were found after the first firing cycle. 2. When the distortion of each experimental group at the first firing cycle were compared, group 1 exhibited the greatest changes($20-27{\mu}m$), followed by group 2($9-13{\mu}m$), and group 3($8-10{\mu}m$). 3. The copings treated with heat before devesting(group 2) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 4. The copings treated with heat after reinvesting(group 3) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 5. No siginificant differences in marginal fit changes were found between the copings treated with heat before devesting(group 2) and the copings treated with heat after reinvesting(group 3). (p>0.01)

  • PDF

Studies on Microbial Penicillin Amidase (Part 5) Application of Reinforced Calcium-Alginate Gel Entrappment Method for Immobilization of Penicillin Amidase from Bacillus megaterium (미생물 페니실린 아미다제에 관한 연구 (제 5보) Bacillus megaterium 페니실린 아미다제의 새로운 고정화 방법)

  • Son, Hyeung-Jin;Seong, Baik-Lin;Mheen, Tae-Ick;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.159-164
    • /
    • 1981
  • Reinforced Calcium-alginate gel entrappment method for enzyme immobilization is described with an example of penicillin amidase from Bacillus megaterium KFCC 10029, a partially constitutive mutant of B. megaterium ATCC 14945. Penicillin amidase recovered from the fermentation broth by adsorption on celite is mixed with alginate and gelatin solution, and cast into a pellet or noodle form by coagulation in calcium salt solution followed by crosslinking with glutaraldehyde. Optimum pH and temperature of the immobilized enzyme preparation were 8.0 and 6$0^{\circ}C$, respectively. Kinetic constants such as Km value and the inhibition constant of 6-APA and phenylacetic acid were 2.6 mM, 7.4 mM and 21.2 mM, respectively. The enzyme leakage from the adsorbent during operation was successfully prevented owing to the increase of physical strength of gel coat. The half lives in a column reactor were 6 and 30 days at the respective temperature of 4$0^{\circ}C$ and 3$0^{\circ}C$, which were the 6-8 fold increased values as compared with those of without entrappment. The results highly recommended the use of reinforced Calcium-alginate gel entrappment method for the enhancement of physical strength and the operational stability of alginate gel entrapped enzyme.

  • PDF

Application of Environmental DNA for Monitoring of Freshwater Fish in Korea (환경유전자의 국내 담수어류 모니터링 적용 연구)

  • Kim, Jeong-Hui;Jo, Hyunbin;Chang, Min-Ho;Woo, Seung-Hyun;Cho, Youngho;Yoon, Ju-Duk
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • In this study, to discuss on the applicability of eDNA as a new method to investigate fish diversity at streams, we applied eDNA at 4 streams (Geum River, Ji Stream, Hwangji Stream, Seomjin River), where endangered species are inhabits, with conventional survey (cast net and kick net). The average (±standard deviation) number of species investigated by eDNA were 19 species (±4.4), and it was relatively higher than average of conventional survey, 10 species (±4.8). Most of case, in this study, eDNA was more efficient than conventional survey. However, there were errors on species identification of Korean endemic species and aliied species from eDNA, and it seems the universal primer (MiFish primer set) is not suitable for them. Furthermore, some of endangered species, caught by conventional method, was not detected by eDNA. As the present universal primer is not suitable for identify the every freshwater fish species in Korea, the complementing or development of universal primer is needed, and the eDNA application after species specific marker development for detecting specific species like endangered species should be considered. In conclusion, if the manual for field survey method by eDNA is developed, we expect applicability enlargement for water ecosystem survey.

THE STUDY ABOUT THE MARGINAL FIT OF THE CASTING TITANIUM AND MACHINE-MILLED TITANIUM COPINGS (주조티타늄과 기계절삭티타늄 코핑의 변연적합성에 관한 연구)

  • Oh Su-Yeon;Vang Mong-Sook;Yang Hong-So;Park Sang-Won;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.20-28
    • /
    • 2006
  • Statement of problem: The titanium has advantages of a high biocompatibility, a corrosion resistence, low density, and cheep price, so it is focused as a substituted alloy But it is quite difficult to cast with the tranditional method due to the high melting point, reacivity with element at, elevated temperature. By using the CAD-CAM system for the crown construction, it is possible to reduce the errors while proceeding the wax-up, investing, and casting procedure Purpose: The purposes of this study were to measure the marginal adaptation of the casting titanium coping and machine-milled titanium coping according to the casting methods and the marginal configurations. Material and method: The marginal configurations were used chamfer shoulder, and beveled shoulder. The total 30 copings were used, and these are divided into 6 groups according to the manufacturing method and marginal configuration. The gap between margin of the model and the restoration was measured with 3-dimensional measuring microscope. Results: The following results were obtained; 1. casting gold coping demonstrated the best marginal seal, followed by casting titanium coping finally machine-milled titanium copings. 2. In casting titanium coping, chamfer demonstrated the best marginal seal, followed by shoulder and beveled shoulder. There was no significantly difference in shoulder and beveled shoulder. But all margin form has clinically acceptable 3. In machine-milled titanium copings, chamfer demonstrated the best marginal seal, followed by shoulder and beveled shoulder. Beveled shoulder show large and uneven marginal gap Conclusions: Above result revealed that marginal adaptation of the titanim coping is avail able in the clinical range, it can be used as an alternative metal and it is prefered especially in chamfer or shoulder margin during implant superstructure fabrication. But there should be more research on machine-milled titanium in order to use it in the clinics.

A Study on the Field Application of High Strength Joint Buried Pile Retaining Wall Method (고강도 결합 매입말뚝 흙막이 공법의 현장적용성 검토에 관한 연구)

  • Lee, Gwangnam;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.671-684
    • /
    • 2022
  • This study verified the stability of a high-strength combined buried pile retaining wall and its applicability in the field. A cast-in-place (C.I.P) retaining wall and the high-strength combined embedded pile retaining wall were compared and analyzed numerically. The numerical analysis assessed the ground behavior and stability (and thus field applicability) of a high-strength combined buried pile retaining wall using data measured in the field. The experimental results showed that the cross-sectional force and displacement of the high-strength bonded pile retaining wall were reduced by 13.6~19.7%, the shear force increased by 0.7~4.7%, and the bending moment increased by 4.5~8.8% relative to the values for the C.I.P retaining wall. Examination of the amount of subsidence in the ground around the excavation showed that the maximum settlement of the C.I.P retaining wall was 46.89 mm and that at the high-strength combined buried pile retaining wall was 39.37 mm. Overall, designing a high-strength combined embedded pile retaining wall by applying the maximum bending moment and shear force calculated using the elastic beam method to the site ground was shown to achieve the safety of all members, as member forces were generated within the elastic region.

A Study on Optimal Reinforcing Type of Precast Retaining Wall Reinforced by Micropiles (마이크로파일로 보강된 프리캐스트 콘크리트 옹벽의 최적보강형태에 관한 연구)

  • Kim, Hong-Taek;Park, Jun-Yong;Yoo, Chan-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.89-99
    • /
    • 2006
  • The PCRW (Precast Concrete Retaining Wall) has many advantages compared with cast in place concrete retaining wall : shorter construction period, excellency of quality and minimum interference with the adjacent structure and traffics. However, shallow foundation type of PCRW, which has comparatively better ground condition, has some disadvantages such as difficulty in transportation and higher cost due to the size of PCRW being expanded by resisting only with self-weight if there is no other supplementary reinforcement. The presented study, in order to complement such disadvantages of PCRW, have applied the micropile method. The micropile method has advantages like low-cost and high-efficiency and does not require huge space, because it can be executed with small size equipment. However, the mechanical behavior characteristics of the PCRW reinforced by micropile, which is installed to improve the reinforcement effect, is not yet clearly identified and there is no suggested standard as to the length, diameter, install angle and install position of micropiles. Hence, this method is yet being designed depend on engineer's experience. In this study, various laboratory model tests as to sliding and overturning were performed in order to identify and present the optimum type of reinforcement and reinforcement effect of the PCRW reinforced by micropiles. In addition, it also executed numerical analysis for the purpose of verifying the optimum type of reinforcement for micropiles based on the results of laboratory model tests. The optimum reinforcement type of micropiles was estimated by model test and numerical analysis. The length of micropiles is 0.4 times wall height and the diameter is 0.04 times wall length.

A Temperature Predicting Method for Thermal Behaviour Analysis of Curved Steel Box Girder Bridges (곡선 강박스거더교의 온도거동 분석을 위한 온도분포 예측기법에 관한 연구)

  • Cho, Kwang-Il;Won, Jeong-Hun;Kim, Sang-Hyo;Lu, Yung-Chien
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.105-113
    • /
    • 2008
  • Solar radiation induces non-uniform temperature distribution in the bridge structure depending on the shape of the structure and shadows cast on it. Especially in the case of curved steel box girder bridges, non-uniform temperature distribution caused by solar radiation may lead to unusual load effects enough to damage the support or even topple the whole curved bridge structure if not designed properly. At present, it is very difficult to design bridges in relation to solar radiation because it is not known exactly how varying temperature distribution affects bridges; at least not specific enough for adoption in design. Standard regulations related to this matter are likewise not complete. In this study, the thermal behavior of curved steel box girder bridges is analyzed while taking the solar radiation effect into consideration. For the analysis, a method of predicting the 3-dimensional temperature distribution of curved bridges was developed. It uses a theoretical solar radiation energy equation together with a commercial FEM program. The behavior of the curved steel box girder bridges was examined using the developed method, while taking into consideration the diverse range of bridge azimuth angles and radii. This study also provides reference data for the thermal design of curved steel box girder bridges under solar radiation, which can be used to develop design guidelines.