• Title/Summary/Keyword: Cast aluminum alloy

Search Result 124, Processing Time 0.027 seconds

Wear Resistance Characteristics of Thermal Sprayed AlSiMg/SiC Composite Coatings on Aluminum Engine Cylinder Bores (Aluminum Engine Cylinder Bore 적용 AlSiMg/SiC 복합 용사피막의 내마모 특성)

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.62-69
    • /
    • 1999
  • The advantages of Thermal sprayed coatings as a replacement for cast iron liners are reduced weight, better heat transfer and reduced cost. One of the most important performance attributes of a cylinder bore coating is its wear resistance, since it must survive the abrasive sliding of both the piston rings and the piston skirt. In this study, composite powders were prepared by ball milling of Al-13Si-3Mg(wt%) alloy with SiC particles. The concentrations of SiC were 40 and 60wt%. The composite powders were sprayed using Metco-9MB plasma torch. Plasma sprayed coatings were heat-treated at 500℃ for 3 hours. The wear resistances of the plasma sprayed coatings were found to improve with heat treatment and superior to the commercially available G.C.I.(gray cast iron). AlSiMg-40SiC heat-treated coatings showed the best wear resistance in this study.

  • PDF

Properties of Aluminum Clad Sheets for Condenser Fins Fabricated with Transition Elements(Cu, Cr) added to Al-1.4Mn-1.0Zn Base Alloys (Cu, Cr 등 천이원소가 첨가된 Al-1.4Mn-1.0Zn 합금을 심재로 하여 제조된 콘덴서 핀용 알루미늄 클래드 박판의 특성)

  • Euh, K.;Kim, H.W.;Lee, Y.S.;Oh, Y.M.;Kim, D.B.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.386-391
    • /
    • 2014
  • In the current study, Al-Mn-Zn alloys are strip-cast and used as the base alloy for the core of aluminum clad sheets used in automotive condenser fins. Transition elements such as Cu and Cr are added to the base core alloy in order to improve the properties of the clad sheets. The AA4343/Al-Mn-Zn-X(X: Cu, Cr)/AA4343 clad sheets are fabricated by roll bonding and further cold-rolled to a thickness of 0.08 mm. Clad sheets were intermediately annealed during cold rolling at $450^{\circ}C$ in order to obtain 40% reduction at the final thickness. Tensile strength and sag resistance of the clad sheets are improved by Cu additions to the core alloy, while corrosion resistance is also increased. Cr-additions to the clad sheets enhance sag resistance and provide low enough corrosion, although tensile strength is not improved. The effect of Cu and Cr additions on the properties of the clad sheets is elucidated by microstructural analysis.

Formation of Thicker Hard Alloy Layer on Surface of Aluminum Alloy by PTA Overlaying with Metal Powder (알루미늄 합금의 표면경화)

  • Lee, Young-Ho
    • Proceedings of the KWS Conference
    • /
    • 1996.10a
    • /
    • pp.3-15
    • /
    • 1996
  • The formation of a thicker hard alloyed layer have been investigated on the surface of aluminum cast alloy (AC2B) by PTA overlaying process with Cr, Cu and Ni motel powders under the condition of overlaying current 125-200A. overlaying speed 150 mm/min and different powder feeding rate 5-20 g/min. In addition the characteristics of hardening and wear resistance of alloyed layer here been examined in relation to the microstructure of alloyed layer. Main results obtained were summarized as follows: 1) There was an optimum overlaying condition to get a good alloyed layer with smooth surface. This good layer became easy to be formed as increasing overlaying current and decreasing powder feeding rate under a constant overlaying speed. 2) Cu powder was the most superior one in metal powders used due to a wide optimum overlaying condition range, uniform hardness distribution of Hv250-350, good oar resistance and freedom from cracking in alloyed layer with fine hyper-eutectic structure. 3) On the contrary, irregular hardness distribution was usually obtained in Cr ar Ni alloyed layers of which hardness was increased as Cr or Ni contents and reached to maximum hardness of about Hv400-850 at about 60wt%cr or 40wt%Ni in alloyed layer. 4) Cracking occurred in Cr or Ni alloyed layers with higher hardness than Hv250-300 at mere than 20-25wt% of Cr or Ni contents in alloyed layer. Porosity was observed in all alloyed layers but decreased by usage of spherical powder with smooth surface.

  • PDF

Effect of Ni Additions on the Microstructure, Mechanical Properties, and Electrical Conductivity of Al Alloy

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Kim, Cheol-Woo;Choi, Se-Weon;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.672-676
    • /
    • 2021
  • In this paper, the effect of Ni (0, 0.5 and 1.0 wt%) additions on the microstructure, mechanical properties and electrical conductivity of cast and extruded Al-MM-Sb alloy is studied using field emission scanning electron microscopy, and a universal tensile testing machine. Molten aluminum alloy is maintained at 750 ℃ and then poured into a mold at 200 ℃. Aluminum alloys are hot-extruded into a rod that is 12 mm in diameter with a reduction ratio of 39:1 at 550 ℃. The addition of Ni results in the formation of Al11RE3, AlSb and Al3Ni intermetallic compounds; the area fraction of these intermetallic compounds increases with increasing Ni contents. As the amount of Ni increases, the average grain sizes of the extruded Al alloy decrease to 1359, 536, and 153 ㎛, and the high-angle grain boundary fractions increase to 8, 20, and 34 %. As the Ni content increases from 0 to 1.0 wt%, the electrical conductivity is not significantly different, with values from 57.4 to 57.1 % IACS.

The Effect of Grain Refinement on Fluidity of Al-4.8%CU-0.6%Mn Alloy (입자미세화가 Al-4.8%Cu-0.6%Mn 합금의 유동도에 미치는 영향)

  • Kwon, Young-Dong;Lee, Zin-Hyoung;Kim, Kyoung-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.109-113
    • /
    • 2002
  • A good fluidity of high strength Al-alloys is required to cast thin wall castings needed to reduce the weight of cast parts. The fluidity, measured as the length to which the metal flows in a standard channel, is affected by many factors, such as the pouring temperature, solidification type of the alloy, the channel thickness, melt head, mold materials and temperature, coating etc. Therefore the experimentally measured fluidity scatters very much and makes it difficult to estimate the fluidity of a melt with a few measurements. The effect of Ti content and grain refinement on the fluidity of high strength aluminum alloy was investigated with a test casting with 8 thin flow channels to reduce the scattering of the fluidity results. The fluidity of Al-4.8%Cu-0.6%Mn Al-6.2%Zn-1.6%Mg-1.0%Cu and well-known commercial aluminum alloy, A356 was tested. Initial content of Ti was varied from 0 to 0.2wt% and Al-5Ti-B master alloy was added for grain refinement. The flow length varied linearly with superheat. By adding Ti and Al-5Ti-B, the fluidity increased. The grain size decreased by adding grain refiner at the same time. The fluidity depended on the degree of grain refinement. The fluidity of the alloy solidifying in mushy type is improved by grain refinement, because grain refinement increases the solid fraction at the time of flow stoppage.

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Microstructural Changes and Mechanical Properties of 7175 Aluminum Alloy Die Forgings (7175 알루미늄합금 형단조재의 미세조직 변화와 기계적 성질)

  • Lee I. G;You J. S;Kang S. S;Lee O. Y
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.168-174
    • /
    • 2004
  • The aim of this study is to investigate the effect of process conditions on the microstructual changes and mechanical properties of large 7175 aluminum die forgings. The cast billets of 370 and 720 mm in diameter were homogenized and die forged after direct chill casting. The size and volume fraction of second phase particles in 720 mm billet were larger than those of 370 mm billet. The interdendritic sites containing the second phase particles was considered to be a crack initiation region in the process of cold upsetting. The tensile and yield strength of die forged specimens of 720 mm billet in the direction of Land L T were higher than those of 370 mm billet. However, the tensile strength of these specimens were 5 to 10% lower than that of American military specification. The plane strain fracture toughness of die forged specimens of 370 mm cast billet showed almost the same level of 720 mm billet, which was die forged after free forging.

Effect of (Ti-B) and Sr Additives on Impact and Fatigue Properties of Recycled AC4A Aluminum Casting Alloy (재활용 AC4A 알루미늄 합금의 충격 및 피로 특성에 미치는 (Ti-B), Sr 첨가제의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.39 no.4
    • /
    • pp.61-74
    • /
    • 2019
  • The effects of Sr and (Ti-B) additives on the impact and fatigue properties of recycled (35% scrap content) AC4A aluminum alloy are investigated here. The acicular morphology of the eutectic Si phase of as-cast specimens was converted to the fibrous one with Sr additives. The grain size of the α-solid solution decreased by the addition of (Ti-B) additives. The crack initiation energy (Ei) of the impact absorption energy decreased due to the incorporation of an oxide film and inclusions depending on the scrap used. The modification of the eutectic Si morphology by Sr additives is considered as the main factor of the increase of the average impact absorption energy (Et). The addition of (Ti-B) additives contributed to an increase in the occurrence of crack deflections due to the refining of α-Al grains, resulting in improved fatigue properties.

Effects of Mn, Cr, and Sr Additions on the Microstructure and Tensile Properties of Al-7Si-0.4Mg-1Fe Casting Alloy (Al-7Si-0.4Mg-1Fe 주조합금의 미세조직과 인장성질에 미치는 Mn, Cr 및 Sr 첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Cho, Jae-Ik;Jung, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The microstructure of Al-7Si-0.4Mg-1Fe alloy mainly consists of aluminum dendrites, Al-Si eutectics, and $Al_5FeSi$ needles. When Mn was added to the alloy, the substantial amount of $Al_5FeSi$ phase was changed into Al(Mn,Fe)Si, however the needle-like morphology was almost unchanged. Combined additions of Cr or Sr with Mn to the base alloy resulted in rod-like Al(Mn, Fe,Si)Si phase. The tensile properties of as-cast alloys were enhanced by the Mn addition, especially when it was added with Sr. The tensile properties after T6 heat treatment was a little improved with 0.7%Mn addition, but Cr or Sr additions with Mn didn't show any positive effect on the properties of heat-treated alloys.

Corrosion analysis of the duplex aluminum alloys (듀플렉스 알루미늄 합금의 내식성 분석)

  • Choi, In Kyu;Kim, Si Myeong;Kim, Sang Ho
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.5
    • /
    • pp.227-232
    • /
    • 2015
  • Corrosion characteristic of the duplex Al-Mg-Si alloys with low, commercial and high solute contents were studied using an anodic polarization test in 1M NaCl solution at room temperature. Polarization range condition of the experiment were form .0.3V to .1.3V with a 0.2 mV scanning speed. The exchange current density means corrosion rate of the low solute alloy was low as about $16.29{\mu}A/cm^2$, and that of the high solute alloy was high as $84.92{\mu}A/cm^2$. The difference was mainly attributed to the inter-granular precipitates $Mg_2Si$ and Si which could make a galvanic corrosion on the aluminum base. The amount of precipitates was greater in high solute alloy at mainly in grain boundary. While, the extruded alloys had better corrosion resistance than the cast alloy because the silicon precipitates become coarse during the extrusion process.