• Title/Summary/Keyword: Cast Ti alloy

Search Result 73, Processing Time 0.022 seconds

Mechanical Properties and Corrosion Resistance of CP-Ti and Ti Alloy for Dental Implants (인공치근용 CP-Ti과 Ti 합금의 기계적 성질 및 내식성)

  • Kim, Yeon-Wook;Chung, Chong-Pyoung
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.488-493
    • /
    • 1998
  • Commercially pure titanium(cp-Ti) and Ti-15wt%Zr-4wt%Nb-4wt%Ta alloy were melted in vacuum induction furnace. According to the chemical analysis, the content of carbon was above ASTM standard in the cast ingots because of using graphite crucible. The TEM micostructures of cp-Ti and Ti alloy shows that chemically stable TiC precipitates distribute in ${\alpha}-Ti$ matrix. In order to examine the properties of cp-Ti and Ti-Zr-Nb-Ta alloy for dental applications, mechanical properties and corrosion resistance were investigated. The anodic polarization properties of Ti-Zr-Nb-Zr alloy were almost same as that of cp-Ti in 1% lactic acid. However, as the results of the anodic polarization test in 5% HCl, it was known that Ti-Zr-Nb-Zr alloy showed a rapid decrease in current density at higher potential in comparison with cp-Ti. The yield stress and tensile strengh in Ti-Zr-Nb-Ta were ${\sigma}_{0.2}=623\;MPa$, ${\sigma}_{T.S.}=708\;MPa$ and these results showed 30% increase in yield stress in comparison with cp-Ti.

  • PDF

Microstructure and Mechanical Properties of Ni-Cr-Mo Based Dental Cast Iron for Porcelain-Fused-to-Metal Firing (도재소부용 Ni-Cr-Mo계 치과용 합금의 미세조직 및 기계적성질)

  • Choi, D.C.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.3
    • /
    • pp.120-125
    • /
    • 2007
  • The microstructure, mechanical properties and melting range of Ni-Cr-Mo based alloys were investigated to develop Be-free Ni-Cr-Mo base dental alloys for Porcelain-Fused-to-Metal Firing(PFM). All as-cast alloys showed dendritic structure. Rockwell hardness of 20Cr7Mo was increased with addition of Si and Ti. On the contrary, it was decreased with addition of Co. The duplex alloying elemental addition such as 3Co + xTi, 2Si + xCo and 2Si + xTi to 20Cr7Mo resulted in much increase of hardness. Rockwell hardness and compressive strength for 20Cr3CoSiTi or 17Cr6CoSiTi alloy that add Si-Ti had similar values compared to the commercial alloys. Melting range for 20Cr3CoSiTi and 17Cr6CoSiTi alloy that add Si-Ti showed similar or lower than commercial alloys. In conclusion, 20Cr3CoSiTi and 17Cr6CoSiTi alloys can be applied for commercial use.

A Study on the Production of a Compressor Piston for an Automobile Air-Conditioner using Aluminum casting/Forging (알루미늄 주조/단조 공정을 이용한 자동차용 에어컨 컴프레서 피스톤의 생산에 관한 연구)

  • Lee, Sung-Mo;Wang, Shin-Il;Kim, Hyo-Ryang;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.53-59
    • /
    • 2000
  • In this study aluminum casting experiments are carried out to reduce the grain size of a cast preform and to spheriodize its dendritic structure by adding Ti+B and Zr and to modify flaked eutectic silicon by adding Sr, And a finite element simulation is performed to determine an optimal configuration of the cast preform to be used in forging of a compressor piston for an automobile air-conditioner. When 0.15% Ti+B Zr and 0.05% Sr are added respectively into the molten aluminum alloy the finest grain in casting of the preform is obtained. It is confirmed that the optimal configuration of the cast preform predicted by FEM simulation is very useful for forging the compressor piston. After forging the cast preform of the compressor piston. the microstructure and the hardness of the cast preform is compared with those of the cast/forged product.

  • PDF

Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings (치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직)

  • Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

The Effect of Grain Refinement on Fluidity of Al-4.8%CU-0.6%Mn Alloy (입자미세화가 Al-4.8%Cu-0.6%Mn 합금의 유동도에 미치는 영향)

  • Kwon, Young-Dong;Lee, Zin-Hyoung;Kim, Kyoung-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.109-113
    • /
    • 2002
  • A good fluidity of high strength Al-alloys is required to cast thin wall castings needed to reduce the weight of cast parts. The fluidity, measured as the length to which the metal flows in a standard channel, is affected by many factors, such as the pouring temperature, solidification type of the alloy, the channel thickness, melt head, mold materials and temperature, coating etc. Therefore the experimentally measured fluidity scatters very much and makes it difficult to estimate the fluidity of a melt with a few measurements. The effect of Ti content and grain refinement on the fluidity of high strength aluminum alloy was investigated with a test casting with 8 thin flow channels to reduce the scattering of the fluidity results. The fluidity of Al-4.8%Cu-0.6%Mn Al-6.2%Zn-1.6%Mg-1.0%Cu and well-known commercial aluminum alloy, A356 was tested. Initial content of Ti was varied from 0 to 0.2wt% and Al-5Ti-B master alloy was added for grain refinement. The flow length varied linearly with superheat. By adding Ti and Al-5Ti-B, the fluidity increased. The grain size decreased by adding grain refiner at the same time. The fluidity depended on the degree of grain refinement. The fluidity of the alloy solidifying in mushy type is improved by grain refinement, because grain refinement increases the solid fraction at the time of flow stoppage.

Characteristics of Silicides in Titanium Alloys Processed by HIP (티타늄합금에서 HIP에 의해 형성된 실리사이드의 특성)

  • Jeong, Hui-Won;Kim, Seung-Eon;Hyeon, Yong-Taek;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.31
    • /
    • pp.113-125
    • /
    • 2001
  • Silicon addition in titanium alloys generally results in solid solution hardening by silicon itself and precipitation hardening by titanium silicides. The morphology and distribution of the titanium silicides depend upon the alloy chemistry or the heat treatment condition, and play an important role in improving the mechanical properties of the alloys. In this study, the morphology and crystallographic characteristics of the titanium silicides in the Ti-Fe-Si alloy system were studied. Three types of silicides were found in the alloys; (1) interconnected chain-like silicides at grain boundary, (2) coarse silicides over im, (3) fine silicides smaller than 0.2m. Ti3Si was dominant in cast + HIP condition while Ti5Si3 was dominant in as-cast state. It is recognized that $Ti_5Si_3$$\rightarrow$$Ti_3Si$ transition occurred by the peritectoid reaction and it may be promoted by the pressure during HIP. However, in the case of the fine silicides, $Ti_3Si$ and $Ti_5Si_3$ were found simultaneously even after HIP. Such a fine silicide was found to have a crystallographic orientation relationship with matrix.

  • PDF

Development of Ti-based Bulk Metallic Glasses with Non-toxic Elements (인체에 유해하지 않은 원소를 사용한 Ti 계 벌크 비정질 합금 개발)

  • Lee, Chul-Kyu;Yi, Seong-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.4
    • /
    • pp.177-180
    • /
    • 2012
  • Ti-based bulk metallic glasses with high glass forming ability were developed through a systematic alloy design technique. The main alloy design strategy was the selection of alloying elements that may not be toxic in the human body. The $Ti_{45.0}Cu_{40.1}Zr_{12.7}Si_{2.2}$ alloy could be cast into an amorphous rod with the diameter of 3 mm by a suction casting technique using Cu mold. The compressive strength of the amorphous rod was measured as 1826 MPa. Since the Ti-based amorphous alloys consist of non-toxic elements, they can be widely used as bio-materials and eco-materials with unique and beneficial properties.

Grindability of Cast Ti-X%Zr(X=10,20,40) Alloys for Dental Applications (치과주조용 Ti-X%Zr(X=10,20,40)합금의 연삭성)

  • Jung, Jong-Hyun;Noh, Hyeong-Rok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2011
  • Purpose: The grindability of binary Ti-X%Zr(X=10,20,40) alloys in order to develop a Ti alloy with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-Zr alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speeds(12000,18000,25000 or 30000rpm) by applying a force(200gr). Grinding rate was evaluated by measuring the amount of metal volume removed after grinding for 1 minute and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared to those for cp Ti(commercially pure titanium) and Ti-6%Al-4%V alloy were used controls. Results: It was observed that the grindability of Ti-Zr alloys increased with an increase in the Zr concentration. More, they are higher than cp Ti, particularly the Ti-20%Zr alloy exhibited the highest grindability at all circumferential speeds. There was significant difference in the grinding rate and grinding ratio between Ti-20%Zr alloy and cp Ti at any speed(p<0.05). Conclusion: By alloying with Zr, the Ti exhibited better grindability at all circumferential speeds. the Ti-20%Zr alloy has a great potential for use as a dental machining alloy.

Effect of adhesive primers on bonding strength of heat cure denture base resin to cast titanium and cobalt-chromium alloy

  • Kim, Su-Sung;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • STATEMENT OF PROBLEM. The poor chemical bonding of a denture base resin to cast titanium framework often introduces adhesive failure and increases microleakage. PURPOSE. This study evaluated the shear bond strengths of a heat cure denture base resin to commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy using two adhesive primers. MATERIAL AND MATHODS. Disks of commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy were cast. Specimens without the primer were also prepared and used as the controls. The shear bond strengths were measured on a screw-driven universal testing machine. RESULTS. The primers significantly(P < .05) improved the shear bond strengths of the heat cure resin to all metals. However, the specimens primed with the Alloy $primer^{(R)}$(MDP monomer) showed higher bond strength than those primed with the MR $bond^{(R)}$(MAC-10 monomer) on titanium. Only adhesive failure was observed at the metal-resin interface in the non-primed specimens, while the primed specimens showed mixed failure of adhesive and cohesive failure. CONCLUSIONS. The use of appropriate adhesive metal primers makes it possible not only to eliminate the need for surface preparation of the metal framework before applying the heat cure resins, but also reduce the need for retentive devices on the metal substructure. In particular, the Alloy $primer^{(R)}$, which contains the phosphoric acid monomer, MDP, might be clinically more acceptable for bonding a heat cure resin to titanium than a MR $bond^{(R)}$, which contains the carboxylic acid monomer, MAC-10.

A Study on the Control of Cast Microstructure in the Aluminum Casting/Forging Process (알루미늄 주조/단조 공정에서 주조조직 제어에 관한 연구)

  • Bae, Won-Byong;Kang, Chung-Yun;Lee, Young-Seok;Lee, Sung-Mo;Hong, Chang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.41-47
    • /
    • 1999
  • The scale of dendritic structure of a cast preform plays a key role in determining the mechanical properties of cast/forged products. In this study, casting experiments are carried out to reduce dendrite arm spacing (DAS) to smaller than 20 ${\mu}$m by increasing cooling rate of the mold and then to spheriodize dendritic structures by addition of alloying elements such as Zr and Ti-B. From the casting experiments, appropriate casting conditions for producing the cast preform of a motorcycle connecting rod are obtained. To obtain fine microstructures of the cast preform, mold temperature must set to be low whilst cooling rate being high. When cooling rate is 10 $^{\circ}C$/s, the size of DAS is 17.4 ${\mu}$m. And the degree of spheriodization of a grain in the cast preform is described by aspect ratio, which is defined as the ratio of major and minor radii of an elliptical grain. When 0.5% Zr and 0.24 % Ti+B are added to the molten aluminum alloy, the best aspect-ratio 0.75 is obtained. After forging the cast preform of a motorcycle connecting rod, the microstructure and mechanical properties of the cast preform are compared with those of the cast/forged product. Cast/forged products are superior in microstructure and in mechanical properties such as ultimate strength, elongation, and hardness.

  • PDF