• Title/Summary/Keyword: Caspian Sea

Search Result 25, Processing Time 0.024 seconds

Russia's Perception of Influence on Eurasia and Changing Position on the Caspian Sea (러시아의 유라시아 영향력 인식과 카스피해 입장 변화)

  • Son, Moogab
    • Maritime Security
    • /
    • v.1 no.1
    • /
    • pp.31-59
    • /
    • 2020
  • The purpose of this study is to clarify why Russia has changed its position on the Caspian Sea Convention to allow cross-Caspian routes. The theory that explains Russia's change of position on Eurasian integration suggests isolation from the West and rising political and economic importance in the Asia-Pacific as cause, but fails to explain the cause of the change in position that could allow Western influence. Thus, this article suggests that a change in Russia's perception on expanding Eurasia's influence as the cause of the change on its position on the Caspian Sea.

  • PDF

The Trade Routes and the Silk Trade along the Western Coast of the Caspian Sea from the 15th to the First Half of the 17th Century

  • MUSTAFAYEV, SHAHIN
    • Acta Via Serica
    • /
    • v.3 no.2
    • /
    • pp.23-48
    • /
    • 2018
  • The Silk Road usually implies a network of trade and communications that stretched from east to west and connected China and the countries of the Far East via Central Asia and the Middle East to the eastern Mediterranean, or through the northern coast of the Caspian Sea and the Volga basin to the Black Sea coast. However, at certain historical stages, a network of maritime and overland routes stretching from north to south, commonly called the Volga-Caspian trade route, also played a significant role in international trade and cultural contacts. The geopolitical realities of the early Middle Ages relating to the relationship of Byzantium, the Sassanid Empire, and the West Turkic Khaganate, the advance of the Arab Caliphate to the north, the spread of Islam in the Volga region, the glories and fall of the Khazar State, and the Scandinavian campaigns in the Caucasus, closely intertwined with the history of transport and communications connecting the north and south through the Volga-Caspian route. In a later era, the interests of the Mongolian Uluses, and then the political and economic aspirations of the Ottoman Empire, the Safavid State, and Russia, collided or combined on these routes. The article discusses trade contacts existing between the north and the south in the 15th and first half of the 17th century along the routes on the western coast of the Caspian Sea.

THE CASPIAN SEA LEVEL, DYNAMICS, WIND, WAVES AND UPLIFT OF THE EARTH'S CRUST DERIVED FROM SATELLITE ALTIMETRY

  • Lebedev, S.A.;Kostianoy, A.G.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.973-976
    • /
    • 2006
  • The oscillations of the Caspian Sea level represent a result of mutually related hydrometeorological processes. The change in the tendency of the mean sea level variations that occurred in the middle 1970s, when the long-term level fall was replaced by its rapid and significant rise, represents an important indicator of the changes in the natural regime of the Caspian Sea. Therefore, sea level monitoring and long-term forecast of the sea level changes represent an extremely important task. The aim of this presentation is to show the experience of application of satellite altimetry methods to the investigation of seasonal and interannual variability of the sea level, wind speed and wave height, water dynamics, as well as of uplift of the Earth’s crust in different parts of the Caspian Sea and Kara-Bogaz-Gol Bay. Special attention is given to estimates of the Volga River runoff derived from satellite altimetry data. The work is based on the 1992-2005 TOPEX/Poseidon (T/P) and Jason-1 (J-1) data sets.

  • PDF

Hydrocarbon seeps and mud volcanoes in the Caspian Sea characterized with use of the Envisat ASAR images

  • Zatyagalova, Victoria V.;Ivanov, Andrei Yu.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.376-379
    • /
    • 2006
  • A numerous oil slicks of natural origin were revealed in the southwest (SW) part of Caspian Sea by the synthetic aperture radar (SAR) images acquired by Envisat satellite in 2003-2004. On the basis of computer processing, visual analysis of SAR images and comparisons with bathymetry, geophysical and seismic data in geographic information system (GIS), a link between these slicks and unloading of liquid hydrocarbons in the SW Caspian is established. Oil slicks are basically concentrated above domes of local geological formations of the sedimentary cover. In total more than 90 seeps and mud volcanoes having a repeating regime and representing an active type were identified; they are distributed across the SW Azerbaijan and West Iranian sectors. Periodical occurrence of slicks can reflect alternation of mud volcanism pulses forced by intensive seismicity with the quiet periods. Seepage rate of oil in the SW part of the Caspian Sea according to SAR images is estimated to be up to 16,000 metric tons per year. The importance of unloading of oils on hydrochemistry and ecological conditions of the Caspian Sea is demonstrated. Conclusion is done that the Envisat SAR to be an excellent tool for studying oil seeps through observation oil slicks floating on the sea surface.

  • PDF

Development of integrated marine monitoring network on southern coastline of Caspian sea

  • Najafi-Jilani, A.;Nik-Khah, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.136-140
    • /
    • 2011
  • Monitoring of water surfaces through permanent measurement of hydrodynamic and meteorological data is one of the main requirements in safe and sustainable water management. The Caspian Sea, the major surface water body in Iran, significantly affects more than 600 km of urban and industrial coastline. In the present work, an integrated marine monitoring network for the entire southern coastline of the Caspian Sea was developed. The main design concerns centered on the network measuring components and data recording, checking, filtering, gap recognition, and transferring systems. Four coastal monitoring stations were assigned, along with two regional collecting stations and one central data station for gathering, checking and delivering recorded data at different access levels. Applicable guidelines on selection of measuring devices for both shallow and deep water zones are presented herein.

Estimating chlorophyll-A concentration in the Caspian Sea from MODIS images using artificial neural networks

  • Boudaghpour, Siamak;Moghadam, Hajar Sadat Alizadeh;Hajbabaie, Mohammadreza;Toliati, Seyed Hamidreza
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.515-521
    • /
    • 2020
  • Nowadays, due to various pollution sources, it is essential for environmental scientists to monitor water quality. Phytoplanktons form the end of the food chain in water bodies and are one of the most important biological indicators in water pollution studies. Chlorophyll-A, a green pigment, is found in all phytoplankton. Chlorophyll-A concentration indicates phytoplankton biomass directly. Therefore, Chlorophyll-A is an indirect indicator of pollutants, including phosphorus and nitrogen, and their refinement and control are important. The present study, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images were used to estimate the chlorophyll-A concentration in southern coastal waters in the Caspian Sea. For this purpose, Multi-layer perceptron neural networks (NNs) were applied which contained three and four feed-forward layers. The best three-layer NN has 15 neurons in its hidden layer and the best four-layer one has 5 in each. The three- and four- layer networks both resulted in similar root mean square errors (RMSE), 0.1($\frac{{\mu}g}{l}$), however, the four-layer NNs proved superior in terms of R2 and also required less training data. Accordingly, a four-layer feed-forward NN with 5 neurons in each hidden layer, is the best network structure for estimating Chlorophyll-A concentration in the southern coastal waters of the Caspian Sea.

Dual effect of Low- frequency Electromagnetic Field on Muscle Histopathology of Caspian Sea Cyprinus carpio

  • Samiee, Farzaneh;Samiee, Keivandokht
    • Journal of fish pathology
    • /
    • v.30 no.1
    • /
    • pp.51-61
    • /
    • 2017
  • The effect of electromagnetic field on aquatic organisms has received little attention. In the current study, the effect of 50Hz electromagnetic field on muscle histopathology of Caspian Sea Cyprinus carpio, a species of economic importance, was investigated. A total of 120 healthy fish were used in this study. They were classified randomly in one of two groups as follows: Control or unexposed EMF group and experimental group with 5 different magnetic field intensities (0.1, 1, 3, 5 and 7mT) at 2 different exposure times including 30 and 60 minutes. Fish in the experimental group were exposed only once. Two weeks after exposure, dorsal muscles sectioned transversely, stained and were examined using a light microscope. Histopathologic assessments showed significant difference between control and EMF exposed groups at both 30 min. (p<0.01) and 60 min. (p<0.001) exposure times. We report for the first time that electromagnetic field in interaction with muscular tissue of Cyprinus carpio exhibits a dual effect which depends on the field intensity, and exposure time. At short exposure time (30 min.), EMF stimulates muscle growth process. At longer exposure time (60 min.), EMF can damage muscle tissue and result in muscle necrosis. More research is required to elucidate precise mechanisms involved in muscle hypertrophy and pathologic changes.

Risk analysis of offshore terminals in the Caspian Sea

  • Mokhtari, Kambiz;Amanee, Jamshid
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-285
    • /
    • 2019
  • Nowadays in offshore industry there are emerging hazards with vague property such as act of terrorism, act of war, unforeseen natural disasters such as tsunami, etc. Therefore industry professionals such as offshore energy insurers, safety engineers and risk managers in order to determine the failure rates and frequencies for the potential hazards where there is no data available, they need to use an appropriate method to overcome this difficulty. Furthermore in conventional risk based analysis models such as when using a fault tree analysis, hazards with vague properties are normally waived and ignored. In other word in previous situations only a traditional probability based fault tree analysis could be implemented. To overcome this shortcoming fuzzy set theory is applied to fault tree analysis to combine the known and unknown data in which the pre-combined result will be determined under a fuzzy environment. This has been fulfilled by integration of a generic bow-tie based risk analysis model into the risk assessment phase of the Risk Management (RM) cycles as a backbone of the phase. For this reason Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are used to analyse one of the significant risk factors associated in offshore terminals. This process will eventually help the insurers and risk managers in marine and offshore industries to investigate the potential hazards more in detail if there is vagueness. For this purpose a case study of offshore terminal while coinciding with the nature of the Caspian Sea was decided to be examined.

SATELLITE MONITORING OF OIL POLLUTION IN THE EUROPEAN SEAS

  • Kostianoy, Andrey G.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.977-980
    • /
    • 2006
  • Ships and industries damage the delicate coastal ecosystem in many parts of the world by releasing oil or pollutants into rivers, coastal and offshore waters. After a tanker accident the biggest problem is to get a clear idea of the extent of the oil slick and predict the way it will move. For natural and man-made oil spills it is necessary to operate a regular and operational monitoring. In the Mediterranean, North and Baltic seas aircrafts or ships normally carry it out. This is expensive and is constrained by the limited availability of these resources, borders between countries, daylight hours, good weather conditions, etc. Satellite imagery can help greatly identifying probable spills over large areas and then guiding aerial surveys for precise observation of specific locations. The Synthetic Aperture Radar (SAR) instrument, which can collect data almost independently of weather and light conditions, is an excellent tool to monitor and detect oil on water surfaces. SAR is currently on board the ENVISAT, ERS-2 and RADARSAT satellites. The application of this technology to the investigation of oil pollution in the Caspian, Black, Mediterranean, North and Baltic seas is shown.

  • PDF