• Title/Summary/Keyword: Caspase-3 Inhibitor

Search Result 327, Processing Time 0.03 seconds

Degradation of the Transcription Factors NF-${\kappa}B$, STAT3, and STAT5 Is Involved in Entamoeba histolytica-Induced Cell Death in Caco-2 Colonic Epithelial Cells

  • Kim, Kyeong Ah;Min, Arim;Lee, Young Ah;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.5
    • /
    • pp.459-469
    • /
    • 2014
  • Entamoeba histolytica is a tissue-invasive protozoan parasite causing dysentery in humans. During infection of colonic tissues, amoebic trophozoites are able to kill host cells via apoptosis or necrosis, both of which trigger IL-8-mediated acute inflammatory responses. However, the signaling pathways involved in host cell death induced by E. histolytica have not yet been fully defined. In this study, we examined whether calpain plays a role in the cleavage of pro-survival transcription factors during cell death of colonic epithelial cells, induced by live E. histolytica trophozoites. Incubation with amoebic trophozoites induced activation of m-calpain in a time- and dose-dependent manner. Moreover, incubation with amoebae resulted in marked degradation of STAT proteins (STAT3 and STAT5) and NF-${\kappa}B$ (p65) in Caco-2 cells. However, $I{\kappa}B$, an inhibitor of NF-${\kappa}B$, was not cleaved in Caco-2 cells following adherence of E. histolytica. Entamoeba-induced cleavage of STAT proteins and NF-${\kappa}B$ was partially inhibited by pretreatment of cells with a cell-permeable calpain inhibitor, calpeptin. In contrast, E. histolytica did not induce cleavage of caspase-3 in Caco-2 cells. Furthermore, pretreatment of Caco-2 cells with a calpain inhibitor, calpeptin (but not the pan-caspase inhibitor, z-VAD-fmk) or m-calpain siRNA partially reduced Entamoeba-induced DNA fragmentation in Caco-2 cells. These results suggest that calpain plays an important role in E. histolytica-induced degradation of NF-${\kappa}B$ and STATs in colonic epithelial cells, which ultimately accelerates cell death.

Activation of Pro-Apoptotic Multidomain Bcl-2 Family Member Bak and Mitochondria-Dependent Caspase Cascade are Involved in p-Coumaric Acid-Induced Apoptosis in Human Jurkat T Cells (p-Coumaric acid에 의해 유도되는 인체 Jurkat T 세포의 에폽토시스 기전)

  • Lee, Je-Won;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1678-1688
    • /
    • 2011
  • The apoptogenic effect of p-coumaric acid, a phenolic acid found in various edible plants, on human acute leukemia Jurkat T cells was investigated. Exposure of Jurkat T cells to p-coumaric acid (50-$150{\mu}M$) caused cytotoxicity and TdT-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic DNA fragmentation along with Bak activation, ${\Delta}{\psi}m$ loss, activation of caspase-9, -3, -7, and -8, and PARP degradation in a dose-dependent manner. However,these apoptotic events were completely abrogated in Jurkat T cells overexpressing Bcl-2.Under these conditions, necrosis was not accompanied. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk) could prevent p-coumaric acid-induced sub-$G_1$ peak representing apoptotic cells, whereas it failed to block ${\Delta}{\psi}m$ loss, indicating that the activation of caspase cascade was prerequisite for p-coumaric acid-induced apoptosis as a downstream event of ${\Delta}{\psi}m$ loss. FADD- and caspase-8-positive wild-type Jurkat T cell clone A3, FADD-deficient Jurkat T cell clone I2.1, and caspase-8-deficient Jurkat T cell clone I9.2 exhibited similar susceptibilities to the cytotoxicity of p-coumaric acid, excluding an involvement of Fas/FasL system in triggering the apoptosis. The apoptogenic activity of p-coumaric acid is more potent in malignant Jurkat T cells than in normal human peripheral T cells. Together, these results demonstrated that p-coumaric acid-induced apoptogenic activity in Jurkat T cellswas mediated by Bak activation, ${\Delta}{\psi}m$ loss, and subsequent activation of multiple caspases such as caspase-9, -3, -7, and-8, and PARP degradation, which could be regulated by anti-apoptotic protein Bcl-2.

Effects of Isothiocyanates on Antioxidant Response Element-mediated Gene Expression and Apoptosis

  • Hong Sung-Jae;Kim Sung-Min;Kim Young-Sook;Hu Rong;Kong A.N. Tony;Kim Bok-Ryang
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.53-60
    • /
    • 2004
  • The pro-apoptotic effect of phenethyl isothiocyanate (PEITC) and the role of glutathione (GSH) in sulforaphane (SFN)-induced antioxidant response element-dependent gene expression were investigated. The caspase-3 and caspase-9 activities were stimulated by PEITC. The release of cytochrome c was time- and dose- dependent. SP600125 suppressed apoptosis induced by PEITC. Similarly, this JNK inhibitor attenuated both cytochrome c release and caspase-3 activation induced by PEITC. SFN is converted to the glutathione conjugate by glutathione S-transferases (GSTs). It was accumulated in mammalian cells by up to several hundred-fold over the extracellular concentration, by conjugation with intracellular GSH. The induction of ARE by SFN was 8.6-fold higher than by SFN-NAC. The decrease in ARE expression at higher concentrations of SFN and SFN-NAC was correlated with the accelerated apoptotic cell death, with a dose-dependent activation of caspase 3 activity by SFN. Upon addition of extracellular GSH within 6 hr of treatment with SFN, the effect on ARE expression was blocked almost completely.

  • PDF

Naringin Protects against Rotenone-induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells

  • Kim, Hak-Jae;Song, Jeong-Yoon;Park, Hae-Jeong;Park, Hyun-Kyung;Yun, Dong-Hwan;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.281-285
    • /
    • 2009
  • Rotenone, a mitochondrial complex I inhibitor, can induce the pathological features of Parkinson's disease (PD). In the present study, naringin, a grapefruit flavonoid, inhibited rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We assessed cell death and apoptosis by measuring mitogen-activated protein kinase (MAPKs) and caspase (CASPs) activities and by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Naringin also blocked rotenone-induced phosphorylation of Jun NH2-terminal protein kinase (JNK) and P38, and prevented changes in B-cell CLL/lymphoma 2 (BCL2) and BCL2-associated X protein (BAX) expression levels. In addition, naringin reduced the enzyme activity of caspase 3 and cleavages of caspase 9, poly (ADP-ribose) polymerase (PARP), and caspase 3. These results suggest that naringin has a neuroprotective effect on rotenone-induced cell death in human neuroblastoma SH-SY5Y cells.

Circ_UBE2D2 Attenuates the Progression of Septic Acute Kidney Injury in Rats by Targeting miR-370-3p/NR4A3 Axis

  • Huang, Yanghui;Zheng, Guangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.740-748
    • /
    • 2022
  • As circ_UBE2D2 has been confirmed to have targeted binding sites with multiple miRNAs involved in septic acute kidney injury (SAKI), efforts in this study are directed to unveiling the specific role and relevant mechanism of circ_UBE2D2 in SAKI. HK-2 cells were treated with lipopolysaccharide (LPS) to construct SAKI model in vitro. After sh-circ_UBE2D2 was transfected into cells, the transfection efficiency was detected by qRT-PCR, cell viability and apoptosis were determined by MTT assay and flow cytometry, and expressions of Bcl-2, Bax and Cleaved-caspase 3 were quantified by western blot. Target genes associated with circ_UBE2D2 were predicted using bioinformatics analysis. After the establishment of SAKI rat model, HE staining and TUNEL staining were exploited to observe the effect of circ_UBE2D2 on tissue damage and cell apoptosis. The expression of circ_UBE2D2 was overtly elevated in LPS-induced HK-2 cells. Sh-circ_UBE2D2 can offset the inhibition of cell viability and the promotion of cell apoptosis induced by LPS. Circ_UBE2D2 and miR-370-3p as well as miR-370-3p and NR4A3 have targeted binding sites. MiR-370-3p inhibitor reversed the promoting effect of circ_UB2D2 silencing on viability of LPS-treated cells, but shNR4A3 neutralized the above inhibitory effect of miR-370-3p inhibitor. MiR-370-3p inhibitor weakened the down-regulation of NR4A3, Bax and Cleaved caspase-3 and the up-regulation of Bcl-2 induced by circ_UB2D2 silencing, but these trends were reversed by shNR4A3. In addition, sh-circ_UBE2D2 could alleviate the damage of rat kidney tissue. Circ_UBE2D2 mitigates the progression of SAKI in rats by targeting miR-370-3p/NR4A3 axis.

Broussochalcone B from Broussonetia papyrifera Induce Apoptosis via Activation of a Caspase Cascade and Reactive Oxygen Species Production in Human HepG2 cells (꾸지나무 유래 화합물 Broussochalcone B의 HepG2 간암세포의 세포사멸에 미치는 영향)

  • Park, Jin Ryang;Ryu, Hyung Won;Cho, Byoung Ok
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • The aim of this study was to investigate the mechanisms underlying apoptosis induced by a broussochalcone B (BCB) from Broussonetia papyrifera in HepG2 cells. The results showed that BCB treatment for 24 hr significantly inhibited cell viability in a dose-dependent manner, and induced apoptosis in HepG2 cells. More so, BCB treatment triggered the cleavage of caspase-8, -9, -3, poly (ADP-ribose) polymerase (PARP), increase of Bax level, and decrease of Bcl-2 expression. A general caspase inhibitor (z-VAD-fmk) blocked BCB-induced cell death. Furthermore, BCB treatment caused reactive oxygen species (ROS) production in a dose-dependent manner. In addition, an antioxidant N-acetylcysteine (NAC) blocked BCB-induced ROS production and cell death. Therefore, these results indicate that BCB-induced apoptosis is mediated by a caspase dependent pathway and ROS production in HepG2 cells.

Induction of Apoptosis by Hwangheuk-san in AGS Human Gastric Carcinoma Cells through the Generation of Reactive Oxygen Species and Activation of Caspases (AGS 인체 위암세포에서 황흑산에 의한 ROS 생성 및 caspase 활성 의존적 apoptosis 유발)

  • Hong, Su Hyun;Park, Cheol;Kim, Kyoung Min;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1235-1243
    • /
    • 2015
  • Hwangheuk-san (HHS) is a Korean multi-herb formula comprising four medicinal herbs. HHS, which was recorded in “Dongeuibogam,” has been used to treat patients with inflammation syndromes and digestive tract cancer for hundreds of years. However, little is known about its anti-tumor efficacy. The present study investigated the pro-apoptotic effect and mode of action of HHS against AGS human gastric carcinoma cells. HHS inhibited the cell growth of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, chromatin condensation, and an accumulation of cells in the sub-G1 phase. HHS-induced apoptotic cell death was associated with the up-regulation of pro-apoptotic Bax protein expression, down-regulation of antiapoptotic Bcl-2 protein, and the release of cytochrome c from mitochondria to the cytosol. The treatment of AGS cells with HHS significantly elevated the generation of reactive oxygen species (ROS). Additionally, apoptosis-inducing concentrations of HHS induced the activation of both caspase-9 and -8, initiator caspases of the mitochondrial-mediated intrinsic and death receptor-mediated extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. However, ROS scavenger and pan-caspases inhibitor significantly blocked HHS-induced growth inhibition and apoptosis. Taken together, these findings suggest that HHS induces apoptosis through ROS- and caspase-dependent mechanisms and that HHS may be a potential chemotherapeutic agent for the control of human gastric cancer.

Effect of Acacetin on the Apoptosis Induction of HeLa Cells (Acacetin의 HeLa 세포 Apoptosis 유도 효과)

  • Han, Su Jung;Kim, An Keun
    • YAKHAK HOEJI
    • /
    • v.59 no.1
    • /
    • pp.17-22
    • /
    • 2015
  • In this study, we examined the effect of acacetin on the apoptosis induction of HeLa human cervical cancer cells. The results showed that acacetin inhibited the cell viability and induced apoptosis, leading to PARP cleavage and activation of caspase-9, -3, and -7. Moreover, acacetin-induced apoptosis was attenuated by a broad caspase inhibitor, z-VAD-fmk. Also, acacetin resulted in a loss of mitochondria membrane potential. Taken together, our results demonstrate that the induction of apoptosis by acacetin in HeLa cells is associated with caspase activation via the mitochondria pathway.

Induction of apoptosis in human promyelocytic leukaemia HL -60 cells by yomogin involves release of cytochrome c and activation of caspase

  • Jeong, Seoung-Hee;Koo, Sung-Ja;Ryu, Shi-Yong;Park, Hee-Jun;Lee, Kyung-Tae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.319.1-319.1
    • /
    • 2002
  • Yomogin. an eudesmane sesquiterpene isolated from Artemisia princeps, was found to induce apoptosis in human promyelocytic leukaemia, HL -60 cell with characteristic apoptotic features like nuclear condensation, apoptotic body formation, flipping of membrane phosphatidylserine, release of mitochondrial cytochrome c and caspase-8. -9. and -3 activation. Furthermore. early yomogin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAd fmk and preceded loss of mitochondrial membrane potential. The results suggest that induction of apoptosis by yomogin may provide a pivotal mechanism for their cancer chemopreventive function.

  • PDF

Intracellular pH is a Critical Element in Apoptosis Triggered by GM-CSF Deprivation in TF1 Cells

  • Yoon, Suk Ran;Choi, In Pyo
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.268-275
    • /
    • 2003
  • Background: Hemopoietic cells require the constant presence of growth factors for survival in vitro and in vivo. Caspases have been known as central executors of apoptotic cell death. We have, therefore, investigated the pathways that regulate caspase activity and apoptosis using the $CD34^+$ cell line, TF-1 which requires GM-CSF for survival. Methods: Apoptosis was measured by annexin V staining and mitochondrial membrane potential was measured by DiOC6 labelling. Intracellular pH was measured using pH sensitive fluorochrome, BCECF or SNARF-1, followed by flow cytometry analysis. Caspase activation was analyzed by PARP cleavage using anti-PARP antibody. Results: Removal of GM-CSF induceed PARP cleavage, a hallmark of caspase activity, concomitant with pHi acidification and a drop in mitochondrial potential. Treatment with ZVAD, a competitive inhibitor of caspases, partially rescued cell death without affecting pHi acidification and the reduction of mitochondrial potential, suggesting that both these events act upstream of caspases. Overexpression of Bcl-2 prevented cell death induced by GM-CSF deprivation as well as pHi acidification and the reduction in mitochondrial membrane potential. In parental cells maintained with GM-CSF, EIPA, a competitive inhibitor of $Na^+/H^+$ antiporter induced apoptosis, accompanied by a drastic reduction in mitochondrial potential. In contrast, EIPA induced apoptosis in Bcl-2 transfectants without causing mitochondrial membrane depolarization. Conclusion: Taken together, our results suggest that the regulation of $H^+$fluxes, either through a mitochondriondependent or independent pathway, is central to caspase activation and apoptosis.