• Title/Summary/Keyword: Caspase-3저해제

Search Result 34, Processing Time 0.041 seconds

Apoptotic Response of Human Oral Squamous Carcinoma Cells to Etoposide (Etoposide에 대한 사람구강편평상피암종세포의 세포자멸사 반응)

  • Kim, Gyoo-Cheon;Lee, Kyoung-Duk;Park, Jae-Hyun;Kim, Duk-Han;Park, Jeong-Kil;Park, June-Sang;Park, Bong-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.2
    • /
    • pp.231-238
    • /
    • 2005
  • Anti-cancer drugs have been shown to target diverse cellular functions in mediation cell death in chemosensitive tumors. Most antineoplastic drugs used in chemotherapy of leukemias and solid tumors induce apoptosis in drug-sensitive target cells. However, the precise molecular requirements that are central for drug-induced cell death are largely unknown. Etoposide is used for the treatment of lung and testicular cancer. This study was performed to examine whether etoposide promote apoptosis in human oral squamous carcinoma cells (OSC9) as well as in lung and testicular cancer. Etoposide had a significant dose- and time-dependent inhibitory effect on the viability of OSC9 cells. TUNEL assay showed the positive reaction on condensed nuclei. Hoechst stain demonstrated that etoposide induced a change in nuclear morphology. The expression of p53 was increased at 48 hour, suggesting that the nuclear of OSC9 cell was damaged, thereby inducing apoptosis. Etoposide treatment induced caspase-3 cleavage and activation. Intact PARP protein 116-kDa and 85-kDa cleaved product were observed. The activated caspase-3 led cleavage of the PARP. These results demonstrate that etoposide-induced apoptosis in OSC9 cells is associated with caspase-3 activation.

Curcumin-induced Cell Death of Human Lung Cancer Cells (Curcumin에 의해 유도되는 인간 폐암 세포주의 세포사멸)

  • Hwasin Lee;Bobae Park;Sun-Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Dong Hyun Sohn;Ye-Rin Kim;Sang-Yull Lee;Dong-Seob Kim;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.713-723
    • /
    • 2023
  • Lung cancer is a type of cancer that has the highest mortality rate. It is mainly classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Chemotherapy is used to treat lung cancer, but long-term treatment causes side effects and drug resistances. Curcumin is a bright yellow polyphenol extracted from the root of turmeric. It has biological activities, such as anti-oxidant, anti-cancer, and anti-inflammatory effects. In this study, we observed differential cell death in human lung cancer cells. Based on the results, curcumin at 10, 30, and 50 μM exhibited a dose-dependent inhibition on the cell survival of several lung cancer cells, with minor differential phenotypes. In addition, apoptosis, autophagy, and reactive oxygen species (ROS) regeneration were observed through flow cytometry. Curcumin dose-dependently increased these phenotypes in A549 (NSCLC) and DMS53 (SCLC), which were restored by corresponding inhibitors. Western blotting was performed to measure the level of expression of apoptosis- and autophagy-related proteins. The results indicate that Bax, PARP, pro-caspase-3, and Bcl-2 were dose-dependently regulated by curcumin, with seemingly higher Bax/Bcl-2 ratios in DMS53. In addition, autophagic proteins, p-AKT, p62, and LC3B, were dose-dependently regulated by curcumin. ROS inhibition by diphenyleneiodonium reduced the induction of apoptosis and autophagy generated by curcumin. Taken together, it is suggested that curcumin induces apoptosis and autophagy via ROS generation, leading to cell death, with minor differences between human lung cancer cells.

Induction of Apoptosis in HT-29 Human Colon Cancer Cells by the Pepper Component Piperine (후추의 주요 성분인 Piperine의 대장암세포 세포사멸 유도 효과)

  • Kim, Eun-Ji;Park, Hee-Sook;Shin, Min-Jeong;Shin, Hyun-Kyung;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.442-450
    • /
    • 2009
  • Piperine is an alkaloid-amine found in pepper and has been reported to have anticarcinogenic properties. To explore the possibility that piperine has cancer chemopreventive and chemotherapeutic effects in colon cancer, we examined whether piperine inhibits the growth of HT-29 human colon cancer cells and investigated the mechanisms for this effect. Cells were cultured with various concentrations ($0{\sim}40{\mu}M$) of piperine. Piperine decreased the cell viability and induced apoptosis of HT-29 cells. Western blot analysis of total cell lysates revealed that piperine decreases the protein levels of Bcl-2, Mcl-1, and intact Bid but increases Bik levels. Piperine increased the percentage of cells with depolarized mitochondrial membrane, and the release of cytochrome c into cytoplasm. Piperine induced the cleavage of poly (ADP-ribose) polymerase and caspases 8, 9, 7, and 3 and increased the Fas levels. In addition, piperine significantly decreased the protein levels of survivin. The present results indicate that piperine inhibits the growth of HT-29 colon cancer cells by the induction of apoptosis, which may be mediated by its ability to change the Bcl-2 family proteins, increase the activation of caspases, and decrease survivin levels. Overall, our findings suggest that piperine has cancer chemotherapeutic effects in colon cancer.

YM155 Induces Apoptosis through Downregulation of Anti-apoptotic Proteins in Head and Neck AMC-HN4 Cells (YM155 처리에 의한 두경부 암 AMC-HN4 세포 세포자멸사 유도 효과)

  • Chang, Ho Joon;Kwon, Taeg Kyu;Kim, Dong Eun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.318-324
    • /
    • 2019
  • Squamous cell carcinoma is the primary tumor type in head and neck cancers, the fifth most common malignant neoplasm world-wide. Survivin, a member of the inhibitor of apoptosis family, is highly expressed in head and neck carcinoma patients and correlated with more aggressive forms. In this study, we investigated whether YM155, a specific survivin inhibitor, could induce apoptosis in head and neck AMC-HN4 cells. YM155 was found to markedly induce apoptosis and cleavage of PARP, a marker of apoptosis. Furthermore, YM155 promoted apoptosis in other cancer cells, such as glioma (U251MG) and renal carcinoma (Caki) cells. In contrast, YM155 had no effect on apoptosis in normal mesangial cells. YM155 significantly induced caspase activation, and pan caspase inhibitor z-VAD-fmk markedly blocked apoptosis, PARP cleavage, and caspase-3 cleavage. Therefore, YM155 was seen to instigate caspase-dependent apoptosis in head and neck AMC-HN4 cells, inducing downregulation of survivin as well as other apoptotic proteins such as c-FLIP and Mcl-1. In addition, the induction of apoptosis and PARP cleavage by YM155 treatment was effectively inhibited in survivin-, c-FLIP- and Mcl-1-over-expressing head and neck AMC-HN4 cells. In conclusion, YM155 is a potent candidate for inducing cell death in head and neck AMC-HN4 cells.

Evaluation of Cell Death and the Reduction of ERK Phosphorylation in Non-Small Cell Lung Cancer Cells after Exposure to Sodium Butyrate (Sodium butyrate 노출에 의한 비소세포폐암 세포의 세포사멸과 extracellular signal-regulated kinase 인산화의 감소)

  • Park, Ji-Eun;Lee, Seung-Gee;Lim, Hyun-Ju;Kim, Ji-Young;Chung, Jin-Yong;Kim, Yoon-Jae;Lee, Chang-Hun;Lee, Min-Ki;Yoo, Ki-Soo;Yoo, Young-Hyun;Kim, Jong-Min
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1314-1320
    • /
    • 2009
  • Histone deacetylase inhibitor (HDACI) is a new promising candidate as an antineoplastic agent for the treatment of solid and hematologic malignancies. In order to evaluate cell death and to elucidate the related mechanism(s) in NSCLC cells after HDACI, sodium butyrate (SB), a representative HDACI, was used to treat H460 cells for 48 hrs. SB exposure resulted in a significant reduction of cell viability at concentrations below 7.5 mM, and about 50% of cell death occurred at 20 mM. The types of cell death induced by SB were both apoptosis and necrosis, evaluated by Annexin-V staining combined with propidium iodide. SB treatment significantly evoked G2/M cell cycle arrest and subsequently induced cell death with caspase-dependent manner. While ERK protein content was not altered after SB, phosphorylated forms of ERK were markedly reduced. Taken together, SB is significantly able to induce cell death in NSCLC cell line H460, and it is suggested that the reduction of ERK phosphorylation might be closely involved in the cancer cell death mechanism initiated by HDACI.

Relationship between Reactive Oxygen Species and Adenosine Monophosphate-activated Protein Kinase Signaling in Apoptosis Induction of Human Breast Adenocarcinoma MDA-MB-231 Cells by Ethanol Extract of Citrus unshiu Peel (진피 추출물에 의한 인간유방암 MDA-MB-231 세포의 apoptosis 유도에서 ROS 및 AMPK의 역할)

  • Kim, Min Yeong;HwangBo, Hyun;Ji, Seon Yeong;Hong, Su-Hyun;Choi, Sung Hyun;Kim, Sung Ok;Park, Cheol;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.410-420
    • /
    • 2019
  • Citrus unshiu peel extracts possess a variety of beneficial effects, and studies on their anticancer activity have been reported. However, the exact mechanisms underlying this activity remain unclear. In the current study, the apoptotic effect of ethanol extract of C. unshiu peel (EECU) on human breast adenocarcinoma MDA-MB-231 cells and related mechanisms were investigated. The results showed that the survival rate of MDA-MB-231 cells treated with EECU was significantly inhibited in a concentration-dependent manner, which was associated with the induction of apoptosis. EECU-induced apoptosis was associated with the activation of caspase-8 and caspase-9, which initiate extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3, a representative effect caspase. EECU suppressed the expression of the inhibitor of apoptosis family of proteins, leading to an increased Bax/Bcl-2 ratio and proteolytic degradation of poly (ADP-ribose) polymerase. EECU also enhanced the loss of the mitochondrial membrane potential and cytochrome c release from the mitochondria to the cytosol, along with truncation of Bid. In addition, EECU activated AMP-activated protein kinase (AMPK), and compound C, an AMPK inhibitor, significantly weakened EECU-induced apoptosis and cell viability reduction. Furthermore, EECU promoted the generation of reactive oxygen species (ROS), which acted as upstream signals for AMPK activation as pretreatment of cells, with the antioxidant N-acetyl cysteine reversing both EECU-induced AMPK activation and apoptosis. Collectively, these findings suggest that EECU inhibits MDA-MB-231 adenocarcinoma cell proliferation by activating intrinsic and extrinsic apoptotic pathways, which was mediated through ROS/AMPK-dependent pathways.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.

Induction of Apoptosis by Immature Prunus salicina Lindl. cv. Soldam (피자두(Prunus salicina Lindl. cv. Soldam) 미숙과의 apoptosis 유도 효과)

  • Yu, Mi-Hee;Im, Hyo-Gwon;HwangBo, Mi-Hyang;Lee, Ji-Won;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.221-227
    • /
    • 2005
  • Apoptosis of Prunus salicina Lindl. cv. Soldam, which possesses hematopoiesis, osteoporosis prevention, and antimutagenic effects, at different growth stages was evaluated. Cytotoxic effect of acetone extracts of immature fruits against various tumor cell lines was higher than that of mature fruits, particularly in hormone-independent human breast cancer, MDA-MB-231 cell line. Immature fruit extract increased expression level of pro-apoptotic protein Bax and reduced that of anti-apoptotic protein Bcl-2, and stimulated caspase-3 activity in MDA-MB-231 cells. Results suggest immature fruit of P. salicina Lindl. cv. soldam to be natural source for development of functional food and medical agents to prevent human breast cancer.

Cytoprotective Effect of Zinc-Mediated Antioxidant Gene Expression on Cortisol-Induced Cytotoxicity (Cortisol 유발 세포독성에 대한 아연 관련 항산화 유전자 발현 증가에 의한 세포보호 효과)

  • Chung, Mi Ja;Kim, Sung Hyun;Hwang, In Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.649-656
    • /
    • 2015
  • The protective effect of zinc against cortisol-induced cell injury was examined in rainbow trout gill epithelial cells. Cells exposed to cortisol for 24 h showed increased leakage of lactate dehydrogenase (LDH) as well as decreased cell viability in a dose-dependent manner. Treatment with zinc ($100{\mu}M$ $ZnSO_4$) reduced the severity of both LDH release and cell death as well as protected cells against cortisol-induced caspase-3 activation, indicating reduction of apoptosis. Cortisol-induced cell death, leakage of LDH, and caspase-3 activation were blocked by the glucocorticoid receptor antagonist Mifepristone (RU-486), suggesting that cell injury was cortisol-dependent. In addition, we studied the effect of zinc on the expression of antioxidant genes such as metallothionein A (MTA), metallothionein B (MTB), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G6PD) during cortisol-induced cell injury. MTA, MTB, GST, and G6PD mRNA levels increased after treatment with zinc or cortisol, separately or in combination. Higher mRNA levels of MTA, MTB, GST, and G6PD were detected when cells were treated with $100{\mu}M$ $ZnSO_4$ and $1{\mu}M$ cortisol in combination at the same time compared to treatment with zinc or cortisol separately. Cells treated with zinc showed increased intracellular free zinc concentrations, and this response was significantly enhanced in cells treated with cortisol and zinc. In conclusion, zinc treatment inhibited cortisol-induced cytotoxicity and apoptosis through indirect antioxidant action.

Induction of apoptosis using the mixture of fucoidan and Crepidiastrum denticulatum extract in HepG2 liver cancer cells (후코이단/이고들빼기 혼합물에 의한 HepG2 간암세포의 apoptosis 유도)

  • Se-Eun Park;Dabin Choi;Kyo-nyeo Oh;Hanjoong Kim;Hyungbum Park;Ki-Man Kim
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.276-286
    • /
    • 2024
  • In the present study, we investigated whether a mixture of fucoidan and Crepidiastrum denticulatum extract (FCE) had the potential to improve the therapeutic efficacy of cancer treatment. The results demonstrated that FCE significantly reduced cell viability and induced the release of LDH (lactate dehydrogenase) and DNA fragmentation in HepG2 cells in a dose-dependent manner. In addition, FCE treatment also increased the protein expression level of p53, the release of cytochrome c, and the loss of mitochondrial membrane potential. Moreover, FCE dose-dependently increased protein expression levels of Bax, and cleaved caspase-3 and -9. However, FCE decreased the protein expression level of Bcl-2. These results suggest that FCE inhibits cell proliferation and induces apoptosis via the mitochondrial-mediated intrinsic pathway. The present study demonstrates that FCE can be used as an anti-cancer agent for liver cancer based on apoptosis mechanism.