• Title/Summary/Keyword: Caspase 1

Search Result 1,285, Processing Time 0.033 seconds

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri;Lim, Hyun;Lee, Ju Hee;Park, Haeil;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Induction of caspase-dependent apoptosis in melanoma cells by the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea

  • Kim, Ji-Hae;Jang, Young-Oh;Kim, Beom-Tae;Hwang, Ki-Jun;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.806-811
    • /
    • 2009
  • Recently, various phenolic acid phenethyl ureas (PAPUs) have been synthesized from phenolic acids by Curtius rearrangement for the development of more effective anti-oxidants. In this study, we examined the anti-tumor activity and cellular mechanism of the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea (PAPU1) using melanoma B16/F10 and M-3 cells. Results showed that PAPU1 inhibited the cell proliferation and viability, but did not induce cytotoxic effects on primary cultured fibroblasts. PAPU1 induced apoptotic cell death rather than necrosis in melanoma cells, a result clearly proven by the shift of cells into sub-$G_1$ phase of the cell cycle and by the substantial increase in cells positively stained with TUNEL or Annexin V. Collectively, this study revealed that PAPU1 induced apoptosis in a caspase-dependent manner, suggesting a potential role as a cancer chemopreventive agent for melanoma cells.

Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition

  • Wang, Yi-Xin;Cai, Hong;Jiang, Gang;Zhou, Tian-Bao;Wu, Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6791-6798
    • /
    • 2014
  • Background: To investigate the effect of silibinin on proliferation and apoptosis in human gastric cancer cell line MGC803 and its possible mechanisms. Materials and Methods: Human gastric cancer cell line MGC803 cells were treated with various concentration of silibinin. Cellular viability was assessed by CCK-8 assay andapoptosis and cell cycle distribution by flow cytometry. Protein expression and mRNA of STAT3, and cell cycle and apoptosis regulated genes were detected by Western blotting and real-time polymerase chain reaction, respectively. Results: Silibinin inhibits growth of MGC803 cells in a dose- and time-dependent manner. Silibinin effectively induces apoptosis of MGC803 cells and arrests MGC803 cells in the G2/M phase of the cell cycle, while decreasing the protein expression of p-STAT3, and of STAT3 downstream target genes including Mcl-1, Bcl-xL, survivin at both protein and mRNA levels. In addition, silibinin caused an increase in caspase 3 and caspase 9 protein as well as mRNA levels. Silibinin caused G2/M phage arrest accompanied by a decrease in CDK1 and Cyclin B1 at protein and mRNA levels.. Conclusions: These results suggest that silibinin inhibits the proliferation of MGC803 cells, and it induces apoptosis and causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9, potentially via the STAT3 pathway.

Ethanol Elicits Inhibitory Effect on the Growth and Proliferation of Tongue Carcinoma Cells by Inducing Cell Cycle Arrest

  • Le, Thanh-Do;Do, Thi Anh Thu;Yu, Ri-Na;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.153-158
    • /
    • 2012
  • Cellular effects of ethanol in YD-15 tongue carcinoma cells were assessed by MTT assay, caspase activity assay, Western blotting and flow cytometry. Ethanol inhibited the growth and proliferation of YD-15 cells in a dose- and time-dependent manner in an MTT assay. The effects of ethanol on cell cycle control at low percent range of ethanol concentration (0 to 1.5%), the condition not inducing YD-15 cell death, was investigated after exposing cells to alcohol for a certain period of time. Western blotting on the expression of cell cycle inhibitors showed that p21 and p27 was up-regulated as ethanol concentration increases from 0 to 1.5% whilst the cell cycle regulators, cdk1, cdk2, and cdk4 as well as Cyclin A, Cyclin B1 and Cyclin E1, were gradually down-regulated. Flow cytometric analysis of cell cycle distribution revealed that YD-15 cells exposed to 1.5% ethanol for 24 h was mainly arrested at G2/M phase. However, ethanol induced apoptosis in YD-15 cells exposed to 2.5% or higher percent of ethanol. The cleaved PARP, a marker of caspase-3 mediated apoptosis, and the activation of caspase-3 and -7 were detected by caspase activity assay or Western blotting. Our results suggest that ethanol elicits inhibitory effect on the growth and proliferation of YD-15 tongue carcinoma cells by mediating cell cycle arrest at G2/M at low concentration range and ultimately induces apoptosis under the condition of high concentration.

Induction of Apoptosis by Hwangheuk-san in AGS Human Gastric Carcinoma Cells through the Generation of Reactive Oxygen Species and Activation of Caspases (AGS 인체 위암세포에서 황흑산에 의한 ROS 생성 및 caspase 활성 의존적 apoptosis 유발)

  • Hong, Su Hyun;Park, Cheol;Kim, Kyoung Min;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1235-1243
    • /
    • 2015
  • Hwangheuk-san (HHS) is a Korean multi-herb formula comprising four medicinal herbs. HHS, which was recorded in “Dongeuibogam,” has been used to treat patients with inflammation syndromes and digestive tract cancer for hundreds of years. However, little is known about its anti-tumor efficacy. The present study investigated the pro-apoptotic effect and mode of action of HHS against AGS human gastric carcinoma cells. HHS inhibited the cell growth of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, chromatin condensation, and an accumulation of cells in the sub-G1 phase. HHS-induced apoptotic cell death was associated with the up-regulation of pro-apoptotic Bax protein expression, down-regulation of antiapoptotic Bcl-2 protein, and the release of cytochrome c from mitochondria to the cytosol. The treatment of AGS cells with HHS significantly elevated the generation of reactive oxygen species (ROS). Additionally, apoptosis-inducing concentrations of HHS induced the activation of both caspase-9 and -8, initiator caspases of the mitochondrial-mediated intrinsic and death receptor-mediated extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. However, ROS scavenger and pan-caspases inhibitor significantly blocked HHS-induced growth inhibition and apoptosis. Taken together, these findings suggest that HHS induces apoptosis through ROS- and caspase-dependent mechanisms and that HHS may be a potential chemotherapeutic agent for the control of human gastric cancer.

Evidence for the Association of Ce11u1ar Iron Loss in Nitric Oxide-induced Apoptosis of HL-60 Cells: Involvement of p38 Kinase, c-Jun N-terminal Kinase, Cytochrome C Release, and Caspases Pathways

  • Choi, Suck-Chei;Kim, Beom-Su;Yoon, Kwon-Ha;Song, Moon-Young;Oh, Hyun-Mee;Han, Weon-Cheol;Kim, Tae-Hyeon;Kim, Eun-Cheol;Jun, Chang Duk
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.171-180
    • /
    • 2002
  • Nitric oxide has high affinity for iron, and thus it can cause intracellular iron loss. We tested the idea that intracellular iron can be the primary target of NO toxicity by comparing the signaling mechanisms involved in cell death caused by iron depletion and that caused by NO. Treatment of HL-60 cells with a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), decreased the intracellular iron level rapidly as that observed with the iron chelator deferoxamine (DFO). Iron chelators such as DFO and mimosine could induce death of human leukemic HL-60 cells by a mechanism requiring activation of p38 kinase, c-Jun N-terminal kinase, caspase-3 and caspase-8. DFO and SNAP also caused release of cytochrome c from mitochondria. Inhibition of p38 kinase by a selective inhibitor, SB203580, abolished the NO and DFO-induced cell death, release of cytochrome c, and activation of caspase-3 and caspase-8, thus indicating that p38 kinase lies upstream in the cell death processes. In a parallel situation, the cells that are sensitive to NO showed similar sensitivity to DFO. Moreover, simultaneous addition of ferric citrate, an iron-containing compound, inhibited the SNAP and DFO-induced activation of caspases and also blocked the NO-mediated cell cycle arrest at $G_1$ phase. Collectively, our data implicate that the NO-induced cell death of tumor cells including HL-60 cells is mediated by depletion of iron and further suggest that activation of p38 kinase lies upstream of cytochrome c release and caspase activation involved in this apoptotic process.

Inducing Apoptosis of NCI-H157 Human Lung Carcinoma Cells via Activation of Caspase Cascade by Combination Treatment with Arsenic Trioxide and Sulindac (NCI-H157 폐암 세포주에서 Caspase Cascade 활성을 통한 Arsenic Trioxide와 Sulindac 병합요법의 세포고사효과)

  • Kim, Hak Ryul;Yang, Sei Hoon;Jeong, Eun Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.4
    • /
    • pp.381-392
    • /
    • 2004
  • Arsenic trioxide($As_2O_3$) was introduced into the treatment of refractory or relapsed acute promyelocytic Ieukemia. Some investigators have reported that arsenic trioxide had induced apoptosis in a variety of solid human tumor cell lines, including non-small cell lung cancer. Non-steroidal anti-inflammatory drugs(NSAIDs) are powerful chemopreventive agents for gastrointestinal cancers and the growth of established tumors are reduced by inducing apoptosis. It's also reported that NSAIDs enhanced tumor response to chemotherapeutic drugs or radiation. In this study, we aimed to determine whether combination of arsenic trioxide with sulindac augmented its apoptotic potential in NCI-H157 human lung cancer cells. The human lung cancer cell line NCI-H157 was treated with arsenic trioxide and sulindac. Cell viability was measured by the MTT assay. Apoptosis was measured by nuclear staining and flow cytometric analysis. The catalytic activity of the caspase families were measured by the fluorogenic cleavage of biosubstrates. The western blotting were also performed to define the mechanical basis of apoptosis. Combination treatment of arsenic trioxide and sulindac decreased the viability of NCI-H157 human lung cancer cells in a dose-dependent manner. The catalytic activity of caspase-3, 8 and 9 proteases were increased after combination treatment. Consistently PARP was cleaved from 116kDa to 85kDa fragments, and the expression of ICAD was decreased by time-dependent manner. Also combination treatment increased the expression of Fas and Fas/L. Combination therapy of arsenic trioxide with sulindac augments cell death and induces apoptosis via the activation of caspase cascade in NCI-H157 human lung carcinoma cells.