• Title/Summary/Keyword: Caspase 1

Search Result 1,308, Processing Time 0.034 seconds

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

Anti-cancer effects of enzyme-digested fucoidan extract from seaweed Mozuku

  • Teruya, Kiichiro;Matsuda, Sakiko;Nakano, Ayumi;Nishimoto, Takuya;Ueno, Masashi;Niho, Akitono;Yamashita, Makiko;Eto, Hiroshi;Katakura, Yoshinori;Shirahata, Sanetaka
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.41-50
    • /
    • 2009
  • Fucoidan is a uniquely-structured sulfated fucose-rich polysaccharide derived from brown algae. Recently, the abalone glycosidase-digested fucoidan extract (fucoidan extract) derived from seaweed Cladosiphon novae-caledoniae Kylin (Mozuku) draws much attention because of its clinical anti-cancer effect in Japan. Here, we report the cancer cells-specific apoptosis inducing effects of the fucoidan extract. The fucoidan extract suppressed the growth of various anchorage-dependent and -independent cancer cells. The fucoidan extract contained low molecular weight components, which induced apoptosis of human leukemic HL 60 cells but not of human lymphocytes. It was shown that the fucoidan extract lead caspase 3/7 activation and loss of mitochondrial membrane potential in HL 60 cells. Another function of the fucoidan extract was also observed. It has been known that sugar chain expression on the surface of cancer cell membrane changes dependent on their malignancy. The analysis on sugar chain expression profiling using FITC-labeled lectins revealed that the expression of concanavalin A (Con A) binding sugar chain was enhanced by the treatment of human lung adenocarcinoma A549, human uterine carcinoma HeLa and human fibrosarcoma HT1080 cells with the fucoidan extract. Con A-induced apoptosis of cancer cells was stimulated in a dose-and time-dependent manner by the treatment with the fucoidan extract but not of human normal fibroblast TIG-1 cells.

  • PDF

Preventive effect of fermented black ginseng against cisplatin-induced nephrotoxicity in rats

  • Jung, Kiwon;An, Jun Min;Eom, Dae-Woon;Kang, Ki Sung;Kim, Su-Nam
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.188-194
    • /
    • 2017
  • Background: Fermented black ginseng (FBG) is processed ginseng by the repeated heat treatment and fermentation of raw ginseng. The protective effect and mechanism of FBG on cisplatin-induced nephrotoxicity was investigated to evaluate its therapeutic potential. Methods: The free radical scavenging activity of FBG was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH). In addition, the protective effect against cisplatin-induced renal damage was tested in rats. FBG was orally administered every day at a dose of 150 mg/kg body weight for 10 d, and a single dose of cisplatin was administered intraperitoneally (7.5 mg/kg body weight) with 0.9% saline on the $4^{th}$ d. Results: The DPPH radical-scavenging activity of FBG ($IC_{50}=384{\mu}g/mL$) was stronger than that of raw ginseng. The improved DPPH radical-scavenging activity was mediated by the generation phenolic compounds. The decreased cell viability by cisplatin was recovered significantly after treatment with FBG in a dose-dependent manner. Then, the protective effect of FBG on cisplatin-induced oxidative renal damage was investigated in rats. The decreased creatinine clearance levels, which are a reliable marker for renal dysfunction in cisplatin-treated rats, were reduced to the normal level after the administration of FBG. Moreover, FBG showed protective effects against cisplatin-induced oxidative renal damage in rats through the inhibition of $NF-{\kappa}B/p65$, COX-2, and caspase-3 activation. Conclusion: These results collectively show that the therapeutic evidence for FBG ameliorates the nephrotoxicity via regulating oxidative stress, inflammation, and apoptosis.

Effect of Corydalis Tuber on the inhibition of proliferation of human uterine leiomyoma cell and apoptotic gene expression (현호색(玄胡索)이 자궁근종세포의 증식 억제와 Apoptosis 관련 유전자 발현에 미치는 영향)

  • Lee, Hee-Jae;Baek, Seung-Hee;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.214-225
    • /
    • 2006
  • Purpose : This study was aimed to investigate the inhibitory effect of Corydalis Tuber on the proliferation of human uterine leiomyoma cell and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of suvival cells treated with indicated concentration of Corydalis Tuber and investigated cell viability by MTS assay. Furthermore, flow cytometric analyis were used to dissect between necrosis and apoptosis related with cell cycle and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the proliferation of uterine leiomyoma cell treated with Corydalis Tuber was increased in a concentration and time proportional. 2) The result of flow cytometry analysis, subG1 phase arrest related cell apoptosis was not investigated in uterine leiomyoma cell treated Corydalis Tuber but showed G2/M phase prolongation. 3) The gene expression of p27, p21 related cell cycle was increased according to increasing concentration, but p53 was not exchanged. 4) The dephosphorylation of pRb gene were increased dependent on treatment concentration and pro-caspase 3, CDK4 were not exchanged. Conclusion : This study showed that Corydalis Tuber have the inhibitory effect on the proliferation of human uterine leiomyoma cell but the effect was thoughted no relationship with apoptosis. The inhibitory effect was suggested that dephosphorylation of pRb gene induced with increasing p21, p27 prolonged cell division in G2/M phase.

  • PDF

The effect of Sparganii Rhizoma on the proliferation inhibition of human uterine leiomyoma cell and expression of gene related cell apoptosis (삼릉(三稜)이 자궁근종세포의 증식억제와 세포자멸사 관련 발현에 미치는 영향)

  • Park, Chang-Gun;Baek, Seung-Hee;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.199-213
    • /
    • 2006
  • Purpose : This study was aimed to investigate the inhibitory effect of Sparganii Rhizoma on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : This study was evaluated the number of death cells treated with indicated concentration of Sparganii Rhizoma and investigated cell death rate by MTS assay. Furthermore, fluorescence-activated cell sorter analysis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results :1) The inhibitory effect on the growth of uterine leiomyoma cell treated with Sparganii Rhizoma was increased in a dose dependent manner. 2) As the result of FACS analysis, subG1 phase incrase was observed 23.49% inuterine leiomyoma cell treated with Sparganii Rhizoma at $500\;{\mu}g/ml$ compared to control.. 3) The gene expression of p53, p21 related cell apoptosis was increased according to increasing concentration but p27 was none exchanged. 4) The expression of cyclin A, D and E was decreased in a concentration proportional and then the dephosphorylation of pRb was increased. 5) The character of apoptosis, DNA fragmentation was significantly observed according to increasing concentration. 6) The expression of pro-caspase3 were decreased dependent on treatment concentration and activated PARP took place. Conclusion : The inhibitory effect of Sparganii Rhizoma on the proliferation of human uterine leiomyoma cells was observed with apoptosis and cell cycle arrest. These data suggest that Sparganii Rhizoma might be candidate of medical therapy for uterine leiomyoma.

  • PDF

Microarray Analysis of Alteration in Gene Expression by Acori graminei rhizoma (AGR) Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells (흰쥐 대뇌세포의 저산소증 모델에서 석창포(石菖浦 Acori graminei rhizoma. AGR)에 의한 유전자 표현 변화의 microarray 분석)

  • Park, Dong-Jun;Jung, Seung-Hyun;Moon, Il-Soo;Lee, Won-Chol;Shin, Gil-Jo
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.150-161
    • /
    • 2007
  • Acori graminei Rhizomn (AGR) is a perennial herb which has been used clinically as a traditional oriental medicine against stroke, Alzheimer's disease, and vascular dementia. We investigated the effect of AGR on the modulation of gene expression profile in a hypoxic model of cultured rat cortical cells. Rat cerebrocortical cells were grown in Neurobasal medium. On DIV12, cells were treated with AGR $(10ug/m\ell)$, given a hypoxic shock (2% $O_2$, 3 hr) on DIV14, and total RNAs were prepared one day after shock. Microarray analyses indicated that the expression levels of most genes were altered within the global M values +0.5 and -0.5, i.e., 40% increase or decrease. There were 750 genes which were upregulated by < global M +0,2, while 700 genes were downregulated by > global M -0.2. The overall profile of gene expression suggests that AGR suppresses apoptosis (upregulation of anti-apopotic genes such as TEGT, TIEG, Dad, p53, and downregulation of pro-apopotic genes such as DAPK, caspase 2, pdcd8), ROS (upregulation of RARa, AhR), and that AGR has neurotrophic effects (upregulation of Aktl, Akt2). These results provide a platform for investigation of the molecular mechanism of the effect of AGR in neuroprotection.

Antioxidant Effects of Scutellaria baicalensis Georgi Against Hydrogen Peroxide-induced DNA Damage and Apoptosis in HaCaT Human Skin Keratinocytes

  • Lee, Seung Young;Jin, Hyun Mi;Ryu, Byung-Gon;Jung, Ji Young;Kang, Hye Kyeong;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin Woo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.68-68
    • /
    • 2018
  • In this study, we investigated whether S. baicalensis rhizome ethanol extract (SBRE) has antioxidant capacities against oxidative stress induced cellular damage in the HaCaT keratinocytes. Our results revealed that treatment with SBRE prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased the HaCaT cell viability. SBRE also effectively attenuated $H_2O_2$ induced comet tail formation, and inhibited the $H_2O_2$ induced phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V positive cells. In addition, SBRE exhibited scavenging activity against intracellular ROS generation and restored the mitochondria membrane potential loss induced by $H_2O_2$. Moreover, $H_2O_2$ enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with SBRE. Furthermore, SBRE increased the levels of HO-1 associated with the induction of Nrf2. Therefore, we believed that SBRE may potentially serve as an agent for the treatment and prevention of neurodegenerative diseases caused by oxidative stress.

  • PDF

The Role of HS-1200 Induced Autophagy in Oral Cancer Cells

  • Jang, Nam-Mi;Oh, Sang-Hun;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2013
  • Bile acids and synthetic bile acid derivatives induce apoptosis in various kinds of cancer cells and thus have anticancer properties. Recently, it has been suggested that autophagy may play an important role in cancer therapy. However, few data are available regarding the role of autophagy in oral cancers and there have been no reports of autophagic cell death in OSCCs (oral squamous cell carcinoma cells) induced by HS-1200, a synthetic bile acid derivative. We thus examine whether HS-1200 modulates autophagy in OSCCs. Our findings indicate that HS-1200 has anticancer effects in OSCCs, and we observed in these cells that autophagic vacuoles were visible by monodansylcadaverine (MDC)and acridine orange staining. When we analyzed HS-1200-treated OSCC cells for the presence of biochemical markers, we observed that this treatment directly affects the conversion of LC-3II, degradation of p62/SQSTM1 and full-length beclin-1, cleavage of ATG5-12 and the activation of caspase. An autophagy inhibitor suppressed HS-1200-induced cell death in OSCCs, confirming that autophagy acts as a pro-death signal in these cells. Furthermore, HS-1200 shows anticancer activity against OSCCs via both autophagy and apoptosis. Our current findings suggest that HS-1200 may potentially contribute to oral cancer treatment and thus provide useful information for the future development of a new therapeutic agent.

Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

  • Im, Woo-Seok;Chung, Jin-Young;Bhan, Jae-Jun;Lim, Ji-Yeon;Lee, Soon-Tae;Chu, Kon;Kim, Man-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside $Rg_3$ prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by ${\beta}$-galactosidase (${\beta}$-gal) staining. Staining with 4'-6-Diamidino-2-phenylindole verified that most adherent cells (93${\pm}$2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of ${\beta}$-gal-positive EPCs was decreased from 93.8${\pm}$2.0% to 62.5${\pm}$3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms.

Apoptotic Cell Death of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum (길경이 인체 폐암세포에 미치는 영향에 대한 실험적 연구)

  • Lee Sung Yeoul;Kim Won Ill;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1019-1030
    • /
    • 2003
  • Platycodi Radix, the root of Platycodon grandiflorum, commonly known as Doraji, is used as a traditional oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health benefits. In the present study, we investigated the effects of an aqueous extract from the roots of P. grandiflorum (AEPG) on the growth of human lung carcinoma A549 cells. Results obtained are as fellow; AEPG treatment resulted in the inhibition of the cell viability of A549 cells in a concentration-dependent manner. Upon treatment with AEPG, A549 cells developed many of the hallmark features of apoptosis, including condensation of chromatin. Flow cytometry analysis confirmed that AEPG increased populations of apoptotic-sub G1 phase. Western blot and RT-PCR analyses indicated that the expressions of Bcl-2 was down-regulated but Bax was up-regulated in AEPG-treated A549 cells. AEPG-induced apoptotis of A549 cells was associated with rroteolytic cleavage and activation of caspase-3, release of cytochrome c from mitochondria into cytosol and down-regulation of Akt and phospho-Akt proteins in a dose-dependent manner. Induction of apoptosis by AEPG treatment was associated with inhibition and/or degradation of apoptotic target proteins such as poly(ADP-ribose) polymerase, β-catenin and phospholipase C-γ 1. AEPG treatment inhibited the levels of cyclooxygenases protein of A549 cells, which was associated with the inhibition of prostaglandin E2 accumulation in a concentration-dependent fashion. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention against human lung cancer.