• 제목/요약/키워드: Case-based learning

검색결과 1,656건 처리시간 0.032초

대수 문장제를 해결하고 일반화하는 과정에서 드러난 두 중학생의 공변 추론 수준 비교 (Comparison of the Covariational Reasoning Levels of Two Middle School Students Revealed in the Process of Solving and Generalizing Algebra Word Problems)

  • 마민영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권4호
    • /
    • pp.569-590
    • /
    • 2023
  • 본 사례 연구의 목적은 대수 문장제를 해결하고 일반화하는 과정에서 드러난 두 중학생의 공변 추론 수준을 비교하여 분석하는 것이다. 학교 수학에서 이차방정식을 학습하지 않은 중학생 2명을 대상으로 수업을 진행하였고, 수업이 모두 끝난 뒤 회고 분석 과정에서 속도가 일정하게 변하는 상황을 포함한 대수 문장제의 해결에서 두 학생 간의 차이가 두드러지게 드러났다. 이에 본 연구는 속도의 일정함을 가정하거나 속도가 일정하게 변하는 상황을 포함한 대수 문장제를 해결하거나 일반화하는 과정에서 학생들 스스로 구성한 두 변수에 대해 그들 사이의 변화 관계에 대한 이해 수준을 Thompson과 Carlson(2017)이 제안한 공변 추론 수준에 비추어 비교·분석하였다. 그 결과, 본 연구에서는 대수 문장제의 문제 해결 방식과 그 결과가 표면적으로 유사해 보이더라도 두 학생 간의 공변 추론 수준이 서로 다를 수 있음을 확인하였고, 대수 문장제를 해결하고 일반화하는 과정에서 드러난 유사성을 공변 관점에서 제시하였다. 이를 통해 본 연구는 대수 문장제의 교수·학습에서 문제 상황을 빠르게 식으로 변환하여 해를 찾는 데 주목하기보다 학생 스스로 변화하는 두 양을 찾고 그들 사이의 불변하는 관계를 다양한 방식으로 나타내는 활동이 충분히 다루어질 필요가 있음을 제안한다.

텍스트마이닝을 활용한 메타버스 서비스의 경험 품질 평가의 이해: 로블록스 사례 연구 (Understanding the Evaluation of Quality of Experience for Metaverse Services Utilizing Text Mining: A Case Study on Roblox)

  • 김민준
    • 서비스연구
    • /
    • 제13권4호
    • /
    • pp.160-172
    • /
    • 2023
  • 메타버스는 정치, 경제, 사회, 문화적 활동이 가능한 가상의 환경을 나타내는데, 이를 통해 현실과 디지털이 공존하여 사람들은 색다른 일상을 경험할 수 있다. 최근 메타버스의 발전으로, 기존의 서비스 경험 방식이 변화하고 있다. 기존의 선행연구는 주로 메타버스 서비스의 기술 발전에 중점을 두었지만, 최근의 연구들은 고객 관점에서 메타버스 서비스의 경험 품질을 평가하는 것에 중점을 두고 있다. 고객 관점에서 서비스 품질을 결정하는 서비스 특성을 정확히 이해하고 분석해야, 성공적인 메타버스 서비스를 설계할 수 있기 때문이다. 그러나, 선행연구들은 이러한 중요성만을 강조하고 있을 뿐, 평가를 위한 보편적이고 체계적인 개념과 관련된 연구는 부족한 실정이다. 본 연구는 이러한 한계를 극복하기 위해 텍스트마이닝을 활용한 온라인 리뷰 분석을 수행하였다. 특히, 로블록스 서비스의 온라인 리뷰 227,332건을 분석하고, 분석 결과를 기반으로 로블록스 서비스의 개선 방향을 모색하였다. 분석을 위해 토픽 모델링, 감성 분석, 로지스틱 회귀 분석 등의 텍스트마이닝 및 기계학습 알고리즘을 활용하였으며, 서비스 개선 방향을 모색하기 위해 중요도-실행도 분석을 수행하였다. 연구 결과, 메타버스 서비스의 경험 품질 평가에 활용 가능한 9개 서비스 특징을 도출하였으며, 이들과 서비스 만족도 간의 관계 분석을 통해 특징별 중요도를 추정하였다. 마지막으로 중요도-실행도 분석을 통해 메타버스 서비스를 가능케하는 기술적 요소보다 서비스 경험을 강화하는 방향의 서비스 개선 전략이 필요함을 파악하였다. 본 논문의 결과물은 메타버스 서비스에 관심이 있는 기업들에게 중요한 시사점을 제공하며, 기업은 이러한 서비스 특징을 활용하여 자사의 강점 및 약점을 파악하여, 변화하는 메타버스 서비스의 환경에서 우위를 차지하는데 유용한 통찰력을 제공할 것이라 기대한다.

야외 지질 학습에서 나타난 중학생들의 귀추적 추론 사례 연구 (A Case Study of Middle School Students' Abductive Inference during a Geological Field Excursion)

  • 맹승호;박명숙;이정아;김찬종
    • 한국과학교육학회지
    • /
    • 제27권9호
    • /
    • pp.818-831
    • /
    • 2007
  • 지구과학 탐구에서 귀추적 탐구의 중요성을 인식하고, 이를 모델로 한 지구과학 수업에 대한 이론적인 접근이 진행되어 왔다. 또한, 구체적인 지구과학 탐구의 장으로서 야외 지질 학습 현장에 대한 귀추적 탐구의 연구 사례는 매우 중요하다. 이 연구에서는 귀추적 학습 모형을 바탕으로 구성된 야외 지질 학습 프로그램을 중학교 과학 영재 학생들에게 적용하여 학생들의 귀추적 추론 사례와 그 과정에 사용된 사고 전략 및 교사의 교수법적 중재가 학생들의 귀추적 추론에 미치는 영향을 알아보았다. 연구 결과, 학생들은 야외 지질 학습을 진행하는 동안 암석의 구별,함께 나타나는 서로 다른 암석의 생성 과정 설명,변성암의 절리 형성 과정 설명,답사 지역 지형의 형성 과정 설명 등의 사례를 귀추적으로 추론하였다. 또한,학생들은 노두에서 관찰한 사실들을 설명할 수 있는 적절한 규칙을 찾아내는데 다양한 사고 전략들을 사용하였다. 이를 통해 야외 지질 학습 과정에서 학생들에게 과학자들이 수행하는것과 유사한 탐구 및 추론 과정을 경험하게 함으로써 학생들의 귀추적 추론 능력을 함양시킬 수 있음을 보여주었다. 한편, 야외 지질 학습 과정에서 교사의 교수법적 중재는 학생들의 귀추적 추론 과정을 지원하였으며, 특정한 사고 전략을 유도하기도 했지만, 추론의 내용까지 보장해 주지는 못하였다. 학생들은 관찰한 사실들을 설명하기 위한 규직을 추리할 때,그들이 기존에 가지고 있던 잘못된 배경 지식에 근거하고 있었다. 따라서 학생들이 야외 지질 학습 과정에서 올바른 가설을 수립하여 답사 지역의 지질을 해석하고,설득력 있는 귀추적 추론을 위한 규칙을 추리하도록 하기 위해서 교사는 학생들의 귀추적 추론 능력을 길러 주는 것뿐만 아니라,학생들에게 정확한 배경 지식과 정보를 제공해 줄 수 있어야 한다.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • 제25권7호
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

논의-기반 탐구 과학수업에서 역할분담에 따른 고등학생들의 인성 역량 변화 분석 (Analysis of Character Competency Change in High School Students by Role Assignment in Argument-Based Inquiry(ABI) Science Class)

  • 조혜숙;서민숙;남정희;권정인;손정우;박종석
    • 한국과학교육학회지
    • /
    • 제37권4호
    • /
    • pp.763-773
    • /
    • 2017
  • 이 연구는 현장의 과학 수업의 학생들의 인성 여량에 미치는 영향을 분석하여 교과교육을 통한 인성 교육의 가능성을 제시하기 위해 탐구 전 과정에서 논의와 글쓰기를 강조한 논의-기반 탐구(Argumentbased Inquiry, ABI) 과학수업을 교수학습 전략으로 적용하였다. 논의-기반 탐구(ABI) 과학수업에서 역할분담을 변인으로 하여 역할분담을 한 집단(ABI-R집단)과 역할분담을 하지 않은 집단(ABI집단)의 두 집단으로 나누어 집단별 인성 역량 변화를 분석하였다. 이를 위해 광역시에 위치한 남녀공학 일반계 고등학교 2학년을 대상으로 하여 2개 학급 51명은 논의-기반 탐구(ABI) 과학수업에서 역할분담을 하고(ABI-R집단), 2개 학급 46명은 역할분담을 하지 않았다(ABI집단). 4개의 탐구 주제를 총 10시간에 걸쳐 진행하였으며, 처치 전 동일시기에 인성지수 검사를 실시하고 사후 인성지수 검사를 실시하여 변화를 분석하였다. 논의-기반 탐구(ABI) 과학수업의 마지막 단계의 반성 글쓰기에 나타나는 인성 역량을 알아보았고, 과학 수업을 통한 인성 역량 함양에 대한 설문지를 통해 학생들의 인성 교육에 대한 인식 조사를 실시하였다. 과학교과의 논의-기반 탐구(ABI) 과학수업에서 역할분담을 적용한 집단(ABI-R집단)이 역할분담을 하지 않은 집단(ABI집단)의 인성지수 검사 결과, ABI-R집단이 ABI집단 보다 인성 역량 변화가 통계적으로 유의미하게 높았다. 특히, 인성 역량의 하위 요소 중 공감, 책임, 존중에서 역할분담을 적용한 그룹이 역할분담을 나누지 않은 통계적으로 유의미하게 높았다. 모둠 활동과 같은 협동학습에서 역할분담을 통해 학생들은 자신의 역할을 명확하게 인지함으로써 수업에 대한 참여도가 높아지게 되고, 학생들 사이의 상호작용이 촉진되며 다른 사람을 배려하고 존중하게 된다. 그러나 협력 항목에서는 이와는 반대로 역할분담을 적용하지 않은 그룹이 통계적으로 유의미하게 높게 나타났다. 이는 개인이 하나의 역할을 유지하지 않고, 모둠내에서 자연스럽게 자신의 역할을 형성하고 상황에 따라 역할을 교대하면서 공동의 문제를 해결하기 위해 노력하면서 협동이 높아진 것으로 보인다. 논의-기반 탐구(ABI) 과학수업에 대한 학생들의 인식 조사를 분석한 결과, 학생들은 자신들의 인성 역량 변화에 도움이 된다는 인식이 많았고, 협력 항목이 가장 크게 증가할 것으로 기대하고 있었다. 이는 학생들이 논의-기반 탐구(ABI) 과학수업이라는 모둠 활동에서 서로의 이해를 공유하고, 지식 및 정보를 의사소통을 통해 공유함으로써 공동의 문제를 해결하는 것을 강조하기 때문에 인성 역량을 키우는데 도움이 될 것이라고 생각하는 것으로 볼 수 있다. 과학교과에서 모둠 활동에서 역할분담을 통해 학생들이 수업에 적극적으로 참여하도록 하되, 주어진 역할 수행에만 고정되지 않고 문제 상황에 따라 능동적으로 임할 수 있도록 수업상황을 제시할 필요가 있음을 제안하고자 한다.

상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구 (A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle)

  • 김준섭;림빈 보니카;성낙준;홍민
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.17-23
    • /
    • 2020
  • 인간의 특성과 관련된 측정 항목을 나타내는 생체정보는 도난이나 분실의 염려가 없으므로 높은 신뢰성을 가진 보안 기술로서 큰 주목을 받고 있다. 이러한 생체정보 중 지문은 본인 인증, 신원 파악 등의 분야에 주로 사용된다. 신원을 파악할 때 지문 이미지에 인증을 수행하기 어려운 상처, 주름, 습기 등의 문제가 있을 경우, 지문 전문가가 전처리단계를 통해 직접 지문에 어떠한 문제가 있는지 파악하고 문제에 맞는 영상처리 알고리즘을 적용해 문제를 해결한다. 이때 지문에 상처와 주름이 있는 지문 영상을 판별해주는 인공지능 소프트웨어를 구현하면 손쉽게 상처나 주름의 여부를 확인할 수 있고, 알맞은 알고리즘을 선정해 쉽게 지문 이미지를 개선할 수 있다. 본 연구에서는 이러한 인공지능 소프트웨어의 개발을 위해 캄보디아 왕립대학교의 학생 1,010명, Sokoto 오픈 데이터셋 600명, 국내 학생 98명의 모든 손가락 지문을 취득해 총 17,080개의 지문 데이터베이스를 구축했다. 구축한 데이터베이스에서 상처나 주름이 있는 경우를 판별하기 위해 기준을 확립하고 전문가의 검증을 거쳐 데이터 어노테이션을 진행했다. 트레이닝 데이터셋과 테스트 데이터셋은 캄보디아의 데이터, Sokoto 데이터로 구성하였으며 비율을 8:2로 설정했다. 그리고 국내 학생 98명의 데이터를 검증 데이터 셋으로 설정했다, 구성된 데이터셋을 사용해 Classic CNN, AlexNet, VGG-16, Resnet50, Yolo v3 등의 다섯 가지 CNN 기반 아키텍처를 구현해 학습을 진행했으며 지문의 상처와 주름 판독에서 가장 좋은 성능을 보이는 모델을 찾는 연구를 수행했다. 다섯가지 아키텍처 중 지문 영상에서 상처와 주름 여부를 가장 잘 판별할 수 있는 아키텍처는 ResNet50으로 검증 결과 81.51%로 가장 좋은 성능을 보였다.

기업의 교육지향성이 기술혁신과 기업성과에 미치는 영향 : 대 중국 투자 한국기업을 중심으로 (The Impact of Education-Orientation on Technology Innovation and Company Outcome : Focusing on Korean Companies in China)

  • 김정훈;임용택
    • 한국전자거래학회지
    • /
    • 제19권4호
    • /
    • pp.231-249
    • /
    • 2014
  • 국우리는 흔히 21세기가 세계화와 지방화가 동시에 진행되는 글로컬라이제이션(Glocalization)의 시대라고 말하고 있다. 더구나 스마트폰(Smart Phone)의 빠른 보급과 SNS(Social Network Service)의 광범위한 사용으로 인하여 이 시대에는 글로벌 정보 및 지역 정보의 다양한 활용능력이 기업 경쟁력에 미치는 영향력이 지속해서 증대되었으며, 상거래의 형태도 과거의 고전적 방법의 제조나 유통에서 벗어나 전자 상거래를 통한 직접 혹은 간접적인 거래가 급속하게 파급되어져 가고 있는 실정이다. 이러한 새로운 트렌드(Trend)에 적응하는 교육지향성이 정보의 활용 능력을 극대화하여 기술혁신을 주도하는 중요한 요소로 부상하게 되었고, 궁극적으로는 기업의 성과에 영향을 미친다고 하겠다. 본 논문에서는 대 중국 한국투자기업의 교육지향성이 기업의 기술혁신 및 기업성과에 중장기적으로 미치는 영향력을 파악하여, 궁극적으로는 중국에 특화된 기술을 개발하는 기업경영 전략의 기초 자료를 도출하고자 한다. 따라서 본 연구는 연구대상으로서 중국투자기업만을 다루며, 연구문제로서 기술혁신성에 미치는 영향요인 검증과 기술혁신이 기업성과에 미치는 영향을 다루었다. 제 I 장은 서론이며 제 II장에서는 이 논문의 연구대상인 중국투자기업의 특성과 현황을 살펴본 후에, 이 논문의 실증 연구모형의 주요 변인인 학습지향성, 기술혁신, 기업성과의 개념과 의의를 살펴보고 각각에 대한 선행연구들을 정리하였다. 제 III장에서는 이 논문에서 채택한 연구모형과 설문조사에서의 조사 대상 및 방법, 조사 가설, 각 변인의 조작적 정의, 설문지 구성, 분석 방법 등을 설명하였다. 제 IV장에서는 설문조사 결과를 토대로 앞장에서의 연구가설을 검증하였고, 제 V장에서 나타난 이 논문의 연구결과는 기술혁신성에 대한 인식도가 상대적으로 높게 나타났으며 학습지향성과 기술혁신성은 모두 성과와 유의한 상관관계를 갖는 것으로 나타났고, 학습지향성은 기술혁신성에 유의한 정(+)의 영향을 미치는 것으로 나타났으며, 학습지향성과 기술혁신성은 각각 성과에 유의한 정(+)의 영향을 미치는 것으로 연구되었다.

서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교 (Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea)

  • 강은진;유철희;신예지;조동진;임정호
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1739-1756
    • /
    • 2021
  • 대기 중 이산화질소(NO2)는 주로 인위적인 배출요인으로 발생하며 화학 반응을 통해 이차오염 물질 및 오존 형성에 매개 역할을 하는 인체 건강에 악영향을 미치는 물질이다. 우리나라는 지상 관측소에 의한 실시간 NO2 모니터링을 수행하고 있지만, 이는 점 기반의 관측 값으로써 미관측 지역의 공간 분포 분석이 어렵다는 한계점을 지닌다. 본 연구에서는 선형 회귀 기반 모델인 다중 선형 회귀와 회귀 크리깅, 기계학습 알고리즘인 Random Forest (RF), Support Vector Regression (SVR)을 적용한 공간 내삽 모델링을 통해 서울 지역의 지상 NO2 농도 지도를 제작하였고, 일별 Leave-One-Out Cross Validation (LOOCV) 교차 검증을 시행하였다. 2020년 연구기간 내 일별 LOOCV에서 MLR, RK, SVR 모델의 일별 평균 Index of agreement (IOA)는 약 0.57로 유사한 성능을 보였으며, RF (0.50)보다 높은 성능이 확인되었다. RK의 일별 평균 nRMSE는 0.9483%으로 MLR (0.9501%)보다 상대적으로 낮은 오차를 나타냈다. MLR과 RK, RF 모델의 계절별 공간 분포는 비슷한 양상을 보였으며, RF는 다른 모델에 비해 좁은 NO2 농도 범위가 확인되었다. 본 연구에서 제안된 선형 회귀 기반 공간 내삽은 지상 NO2 뿐 아니라 다른 대기 오염 물질의 도시 지역 공간 내삽을 위해 활용 가능성이 높을 것으로 기대된다.

Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성 (Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks)

  • 김현호;한석민
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.23-31
    • /
    • 2020
  • 본 연구는 철도표면상에 발생하는 노후 현상 중 하나인 결함 검출을 위해 학습데이터를 생성함으로써 결함 검출 모델에서 더 높은 점수를 얻기 위해 진행되었다. 철도표면에서 결함은 선로결속장치 및 선로와 차량의 마찰 등 다양한 원인에 의해 발생하고 선로 파손 등의 사고를 유발할 수 있기 때문에 결함에 대한 철도 유지관리가 필요 하다. 그래서 철도 유지관리의 자동화 및 비용절감을 위해 철도 표면 영상에 영상처리 또는 기계학습을 활용한 결함 검출 및 검사에 대한 다양한 연구가 진행되고 있다. 일반적으로 영상 처리 분석기법 및 기계학습 기술의 성능은 데이터의 수량과 품질에 의존한다. 그렇기 때문에 일부 연구는 일반적이고 다양한 철도표면영상의 데이터베이스를 확보하기위해 등간격으로 선로표면을 촬영하는 장치 또는 탑재된 차량이 필요로 하였다. 본연구는 이러한 기계적인 영상획득 장치의 운용비용을 감소시키고 보완하기 위해 대표적인 영상생성관련 딥러닝 모델인 생성적 적대적 네트워크의 기본 구성에서 여러 관련연구에서 제시된 방법을 응용, 결함이 있는 철도 표면 재생성모델을 구성하여, 전용 데이터베이스가 구축되지 않은 철도 표면 영상에 대해서도 결함 검출을 진행할 수 있도록 하였다. 구성한 모델은 상이한 철도 표면 텍스처들을 반영한 철도 표면 생성을 학습하고 여러 임의의 결함의 위치에 대한 Ground-Truth들을 만족하는 다양한 결함을 재 생성하도록 설계하였다. 재생성된 철도 표면의 영상들을 결함 검출 딥러닝 모델에 학습데이터로 사용한다. 재생성모델의 유효성을 검증하기 위해 철도표면데이터를 3가지의 하위집합으로 군집화 하여 하나의 집합세트를 원본 영상으로 정의하고, 다른 두개의 나머지 하위집합들의 몇가지의 선로표면영상을 텍스처 영상으로 사용하여 새로운 철도 표면 영상을 생성한다. 그리고 결함 검출 모델에서 학습데이터로 생성된 새로운 철도 표면 영상을 사용하였을 때와, 생성된 철도 표면 영상이 없는 원본 영상을 사용하였을 때를 나누어 검증한다. 앞서 분류했던 하위집합들 중에서 원본영상으로 사용된 집합세트를 제외한 두 개의 하위집합들은 각각의 환경에서 학습된 결함 검출 모델에서 검증하여 출력인 픽셀단위 분류지도 영상을 얻는다. 이 픽셀단위 분류지도영상들과 실제 결함의 위치에 대한 원본결함 지도(Ground-Truth)들의 IoU(Intersection over Union) 및 F1-score로 평가하여 성능을 계산하였다. 결과적으로 두개의 하위집합의 텍스처 영상을 이용한 재생성된 학습데이터를 학습한 결함 검출모델의 점수는 원본 영상만을 학습하였을 때의 점수보다 약 IoU 및 F1-score가 10~15% 증가하였다. 이는 전용 학습 데이터가 구축되지 않은 철도표면 영상에 대해서도 기존 데이터를 이용하여 결함 검출이 상당히 가능함을 증명하는 것이다.

인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로 (A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait)

  • 이정선;서보밀;권영옥
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.231-252
    • /
    • 2021
  • 인공지능(Artificial Intelligence)은 미래를 가장 크게 변화시킬 핵심 동력으로 산업 전반과 개인의 일상생활에 다양한 형태로 영향을 미치고 있다. 무엇보다 활용 가능한 데이터가 증가함에 따라 더욱더 많은 기업과 개인들이 인공지능 기술을 이용하여 데이터로부터 유용한 정보를 추출하고 이를 의사결정에 활용하고 있다. 인공지능에 관한 기존 연구는 모방 가능한 업무의 자동화에 초점을 두고 있으나, 인간을 배제한 자동화는 장점 못지않게 알고리즘 편향(Algorithms bias)으로 발생되는 오류나 자율성(Autonomy)의 한계점, 그리고 일자리 대체 등 사회적 부작용을 보여주고 있다. 최근 들어, 인간지능의 강화를 위한 증강 지능 (Augmented intelligence)으로서 인간과 인공지능의 협업에 관한 연구가 주목을 받고 있으며 기업도 관심을 가지기 시작하였다. 본 연구는 의사결정을 위해 조언(Advice)을 제공하는 조언자의 유형을 인간, 인공지능, 그리고 인간과 인공지능 협업의 세 가지로 나누고, 조언자의 유형과 의사결정자의 성격 특성이 의사결정에 미치는 영향을 살펴보았다. 311명의 실험자를 대상으로 사진 속 얼굴을 보고 나이를 예측하는 업무를 진행하였으며, 연구 결과 의사결정자가 조언활용을 하려면 먼저 조언의 유용성을 높게 인지하여하는 것으로 나타났다. 또한 의사결정자의 성격 특성이 조언자 유형별로 조언의 유용성을 인지하고 조언을 활용하는 데에 미치는 영향을 살펴본 결과, 인간과 인공지능의 협업 형태인 경우 의사결정자의 성격 특성에 무관하게 조언의 유용성을 더 높게 인지하고 적극적으로 조언을 활용하는 것으로 나타났다. 인공지능 단독으로 활용될 경우에는 성격 특성 중 성실성과 외향성이 강하고 신경증이 낮은 의사결정자가 조언의 유용성을 더 높게 인지하고 조언을 활용하는 것으로 나타났다. 본 연구는 인공지능의 역할을 의사결정과 판단(Decision Making and Judgment) 연구 분야의 조언자의 역할로 보고 관련 연구를 확장하였다는데 학문적 의의가 있으며, 기업이 인공지능 활용 역량을 제고하기 위해 고려해야 할 점들을 제시하였다는데 실무적 의의가 있다.