• Title/Summary/Keyword: Case-Based System

Search Result 7,989, Processing Time 0.049 seconds

Development of human-in-the-loop experiment system to extract evacuation behavioral features: A case of evacuees in nuclear emergencies

  • Younghee Park;Soohyung Park;Jeongsik Kim;Byoung-jik Kim;Namhun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2246-2255
    • /
    • 2023
  • Evacuation time estimation (ETE) is crucial for the effective implementation of resident protection measures as well as planning, owing to its applicability to nuclear emergencies. However, as confirmed in the Fukushima case, the ETE performed by nuclear operators does not reflect behavioral features, exposing thus, gaps that are likely to appear in real-world situations. Existing research methods including surveys and interviews have limitations in extracting highly feasible behavioral features. To overcome these limitations, we propose a VR-based immersive experiment system. The VR system realistically simulates nuclear emergencies by structuring existing disasters and human decision processes in response to the disasters. Evacuation behavioral features were quantitatively extracted through the proposed experiment system, and this system was systematically verified by statistical analysis and a comparative study of experimental results based on previous research. In addition, as part of future work, an application method that can simulate multi-level evacuation dynamics was proposed. The proposed experiment system is significant in presenting an innovative methodology for quantitatively extracting human behavioral features that have not been comprehensively studied in evacuation. It is expected that more realistic evacuation behavioral features can be collected through additional experiments and studies of various evacuation factors in the future.

Design and Application of PMO-Based Project Management Systems (PMO 기반 프로젝트 관리 시스템의 설계 및 적용)

  • Jeong, Cheon-Su;Kim, Seung-Ryeol;Kim, Nam-Gyu
    • The Journal of Information Systems
    • /
    • v.20 no.4
    • /
    • pp.119-143
    • /
    • 2011
  • Recently, Information System (IS) development projects such as the next generation IS project of the financial business domain have shown tendency to become large and complex. Accordingly, a large number of enterprises have introduced a Project Management Office (PMO) to successfully manage multiple complex large-scaled projects. Many researches and empirical studies have proved the positive results of PMO-based projects. For example, most PMO-based projects have been accomplished successfully without exceeding the planned deadline and budget. However, even in the case of PMO-based projects, participants are still supported by legacy Project Management Systems (PMS) developed without considering the PMO. It implies that recent large projects are hardly performed efficiently because of the large gap between the legacy PMS tools developed only for single small projects and the real process of PMO-based project management. Therefore, we attempt to design and develop a PMO-based PMS in which the role and responsibility of PMO are completely implemented. To demonstrate our systems practicality, we applied the devised system to the real project management cases of "K" bank in The Republic of Korea. According to the results of case analysis, all of the four projects supported by our PMO-based PMS have been completed without exceeding planned deadline and budget, and the quality of their final outcome is appraised to be superior.

The hybrid of artificial neural networks and case-based reasoning for intelligent diagnosis system (인공 신경경망과 사례기반추론을 혼합한 지능형 진단 시스템)

  • Lee, Gil-Jae;Kim, Chang-Joo;Ahn, Byung-Ryul;Kim, Moon-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.45-52
    • /
    • 2008
  • As the recent development of the IT services, there is a urgent need of effective diagnosis system to present appropriate solution for the complicated problems of breakdown control, a cause analysis of breakdown and others. So we propose an intelligent diagnosis system that integrates the case-based reasoning and the artificial neural network to improve the system performance and to achieve optimal diagnosis. The case-based reasoning is a reasoning method that resolves the problems presented in current time through the past cases (experience). And it enables to make efficient reasoning by means of less complicated knowledge acquisition process, especially in the domain where it is difficult to extract formal rules. However, reasoning by using the case-based reasoning alone in diagnosis problem domain causes a problem of suggesting multiple causes on a given symptom. Since the suggested multiple causes of given symptom has the same weight, the unnecessary causes are also examined as well. In order to resolve such problems, the back-propagation learning algorithm of the artificial neural network is used to train the pairs of the causes and associated symptoms and find out the cause with the highest weight for occurrence to make more clarified and reliable diagnosis.

Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application (주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용)

  • Jung, Dae-Yi;Jung, Do-Hyun;Moon, Ki-Hyun;Jeong, Chang-Hyun;Noh, Ki-Han;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

The Evaluation-based CBR Model for Security Risk Analysis (보안위험분석을 위한 평가기반 CBR모델)

  • Bang, Young-Hwan;Lee, Gang-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.7
    • /
    • pp.282-287
    • /
    • 2007
  • Information society is dramatically developing in the various areas of finance, trade, medical service, energy, and education using information system. Evaluation for risk analysis should be done before security management for information system and security risk analysis is the best method to safely prevent it from occurrence, solving weaknesses of information security service. In this paper, Modeling it did the evaluation-base CBD function it will be able to establish the evaluation plan of optimum. Evaluation-based CBD(case-based reasoning) functions manages a security risk analysis evaluation at project unit. it evaluate the evaluation instance for beginning of history degree of existing. It seeks the evaluation instance which is similar and Result security risk analysis evaluation of optimum about under using planning.

A Study on the Development of Web-based Expert System for Urban Transit (웹 기반의 도시철도 전문가시스템 개발에 관한 연구)

  • Kim Hyunjun;Bae Chulho;Kim Sungbin;Lee Hoyong;Kim Moonhyun;Suh Myungwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.163-170
    • /
    • 2005
  • Urban transit is a complex system that is combined electrically and mechanically, it is necessary to construct maintenance system for securing safety accompanying high-speed driving and maintaining promptly. Expert system is a computer program which uses numerical or non-numerical domain-specific knowledge to solve problems. In this research, we intend to develop the expert system which diagnose failure causes quickly and display measures. For the development of expert system, standardization of failure code classification system and creation of BOM(Bill Of Materials) have been first performed. Through the analysis of failure history and maintenance manuals, knowledge base has been constructed. Also, for retrieving the procedure of failure diagnosis and repair linking with the knowledge base, we have built RBR(Rule Based Reasoning) engine by pattern matching technique and CBR(Case Based Reasoning) engine by similarity search method. This system has been developed based on web to maximize the accessibility.

Personalized Recommendation System for Location Based Service

  • Lee Keumwoo;Kim Jinsuk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.276-279
    • /
    • 2004
  • The location-based service is one of the most powerful services in the mobile area. The location-based service provides information service for moving user's location information and information service using wire / wireless communication. In this paper, we propose a model for personalized recommendation system which includes location information and personalized recommendation system for location-based service. For this service system, we consider mobile clients that have a limited resource and low bandwidth. Because it is difficult to input the words at mobile device, we must deliberate it when we design the interface of system. We design and implement the personalized recommendation system for location-based services(advertisement, discount news, and event information) that support user's needs and location information. As a result, it can be used to design the other location-based service systems related to user's location information in mobile environment. In this case, we need to establish formal definition of moving objects and their temporal pattern.

  • PDF

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

A UML-based Approach towards Test Case Generation and Optimization

  • Shahid Saleem;Saif U. R. Malik;Bilal Mehboob;Roobaea Alroobaea;Sultan Algarni;Abdullah M. Baqasah;Naveed Ahmad;Muhammad Hasnain
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.633-652
    • /
    • 2024
  • Software testing is an important phase as it ensures the software quality. The software testing process comprises of three steps: generation, execution, and evaluation of test cases. Literature claims the usage of single and multiple 'Unified Modeling Language' (UML) diagrams to generate test cases. Using multiple UML diagrams increases test case coverage. However, the existing approaches show limitations in test case generation from UML diagrams. Therefore, in this research study, we propose an approach to generate the test cases using UML State Chart Diagram (SCD), Activity Diagram (AD), and Sequence Diagram (SD). The proposed approach transforms UML diagrams into intermediate forms: SCD Graph, AD Graph, and SD Graph respectively. Furthermore, by integrating these three graphs, a System Testing Graph (STG) is formed. Finally, test cases are identified from STG by using a traversal algorithm such as Depth First Search (DFS) that is an optimization method. The results show that the proposed approach is better compared to existing approaches in terms of coverage and performance. Moreover, the generated test cases have the ability to detect faults at the unit level, integration, and system level testing.

Development of Awning System using Light Shelf - Focusing on the light environment and lighting energy reduction performance improvement -

  • Jeong, Jinsoo;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.5-13
    • /
    • 2017
  • Purpose: Various studies have been performed to address the issue of increased energy use by buildings. In particular, research on complex envelopes that combines diverse envelope element techniques is currently in progress in the building sector. The present study aimed to develop an awning system using a light shelf, and to verify its validity through performance evaluation. Method: In the present study, a testbed was established for the performance evaluation of the awning system using a light shelf, and the uniformity ratio and lighting energy consumption were compared and analyzed relative to those with no awning and light shelf installation (Case 1), awning installation (Case 2), and light shelf installation (Case 3). Result: 1) In the present study, an awning system using a light shelf (Case 4) where an opening is made on the awning screen and natural light can be introduced through the light shelf located at the bottom was developed. 2) The optimum standard for Case 4 obtained through the performance evaluation was a 0.6m lighting length and a 2m extension length at a light shelf angle of $30^{\circ}$. 3) Case 4 with the optimum standard had a 5.5% lower uniformity ratio than Case 2, but had a higher uniformity ratio than Case 1 and Case 3. 4) Case 4 with the optimum standard showed 13.3%, 44.6%, and 0%~8.7% lighting energy reductions compared to Case 1, Case 2, and Case 3, respectively. 5) Based on the above results, Case 4 suggested in the present study was found to be effective for indoor light environment improvement and lighting energy reduction.