• Title/Summary/Keyword: Case-Based Reasoning Algorithm

Search Result 80, Processing Time 0.024 seconds

Applying CBR algorithm for cyber infringement profiling system (사례기반추론기법을 적용한 침해사고 프로파일링 시스템)

  • Han, Mee Lan;Kim, Deok Jin;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1069-1086
    • /
    • 2013
  • Nowadays, web defacement becomes the utmost threat which can harm the target organization's image and reputation. These defacement activities reflect the hacker's political motivation or his tendency. Therefore, the analysis of the hacker's activities can give the decisive clue to pursue criminals. A specific message or photo or music on the defaced web site and the outcome of analysis will be supplying some decisive clues to track down criminals. The encoding method or used fonts of the remained hacker's messages, and hacker's SNS ID such as Twitter or Facebook ID also can help for tracking hackers information. In this paper, we implemented the web defacement analysis system by applying CBR algorithm. The implemented system extracts the features from the web defacement cases on zone-h.org. This paper will be useful to understand the hacker's purpose and to plan countermeasures as a IDSS(Investigation Detection Support System).

Distributed Table Join for Scalable RDFS Reasoning on Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 대용량 RDFS 추론을 위한 분산 테이블 조인 기법)

  • Lee, Wan-Gon;Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.674-685
    • /
    • 2014
  • The Knowledge service system needs to infer a new knowledge from indicated knowledge to provide its effective service. Most of the Knowledge service system is expressed in terms of ontology. The volume of knowledge information in a real world is getting massive, so effective technique for massive data of ontology is drawing attention. This paper is to provide the method to infer massive data-ontology to the extent of RDFS, based on cloud computing environment, and evaluate its capability. RDFS inference suggested in this paper is focused on both the method applying MapReduce based on RDFS meta table, and the method of single use of cloud computing memory without using MapReduce under distributed file computing environment. Therefore, this paper explains basically the inference system structure of each technique, the meta table set-up according to RDFS inference rule, and the algorithm of inference strategy. In order to evaluate suggested method in this paper, we perform experiment with LUBM set which is formal data to evaluate ontology inference and search speed. In case LUBM6000, the RDFS inference technique based on meta table had required 13.75 minutes(inferring 1,042 triples per second) to conduct total inference, whereas the method applying the cloud computing memory had needed 7.24 minutes(inferring 1,979 triples per second) showing its speed twice faster.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Job Preference Analysis and Job Matching System Development for the Middle Aged Class (중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발)

  • Kim, Seongchan;Jang, Jincheul;Kim, Seong Jung;Chin, Hyojin;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • With the rapid acceleration of low-birth rate and population aging, the employment of the neglected groups of people including the middle aged class is a crucial issue in South Korea. In particular, in the 2010s, the number of the middle aged who want to find a new job after retirement age is significantly increasing with the arrival of the retirement time of the baby boom generation (born 1955-1963). Despite the importance of matching jobs to this emerging middle aged class, private job portals as well as the Korean government do not provide any online job service tailored for them. A gigantic amount of job information is available online; however, the current recruiting systems do not meet the demand of the middle aged class as their primary targets are young workers. We are in dire need of a specially designed recruiting system for the middle aged. Meanwhile, when users are searching the desired occupations on the Worknet website, provided by the Korean Ministry of Employment and Labor, users are experiencing discomfort to search for similar jobs because Worknet is providing filtered search results on the basis of exact matches of a preferred job code. Besides, according to our Worknet data analysis, only about 24% of job seekers had landed on a job position consistent with their initial preferred job code while the rest had landed on a position different from their initial preference. To improve the situation, particularly for the middle aged class, we investigate a soft job matching technique by performing the following: 1) we review a user behavior logs of Worknet, which is a public job recruiting system set up by the Korean government and point out key system design implications for the middle aged. Specifically, we analyze the job postings that include preferential tags for the middle aged in order to disclose what types of jobs are in favor of the middle aged; 2) we develope a new occupation classification scheme for the middle aged, Korea Occupation Classification for the Middle-aged (KOCM), based on the similarity between jobs by reorganizing and modifying a general occupation classification scheme. When viewed from the perspective of job placement, an occupation classification scheme is a way to connect the enterprises and job seekers and a basic mechanism for job placement. The key features of KOCM include establishing the Simple Labor category, which is the most requested category by enterprises; and 3) we design MOMA (Middle-aged Occupation Matching Algorithm), which is a hybrid job matching algorithm comprising constraint-based reasoning and case-based reasoning. MOMA incorporates KOCM to expand query to search similar jobs in the database. MOMA utilizes cosine similarity between user requirement and job posting to rank a set of postings in terms of preferred job code, salary, distance, and job type. The developed system using MOMA demonstrates about 20 times of improvement over the hard matching performance. In implementing the algorithm for a web-based application of recruiting system for the middle aged, we also considered the usability issue of making the system easier to use, which is especially important for this particular class of users. That is, we wanted to improve the usability of the system during the job search process for the middle aged users by asking to enter only a few simple and core pieces of information such as preferred job (job code), salary, and (allowable) distance to the working place, enabling the middle aged to find a job suitable to their needs efficiently. The Web site implemented with MOMA should be able to contribute to improving job search of the middle aged class. We also expect the overall approach to be applicable to other groups of people for the improvement of job matching results.

A Candidate Generation System based on Probabilistic Evaluation in Computer Go (확률적 평가에 기반한 컴퓨터 바둑의 후보 생성 시스템)

  • Kim, Yeong-Sang;Yu, Gi-Yeong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • If there exists a model that calculates the proper candidate position whenever the game of Go is in progress, it can be used for setting up the prototype of the candidate generation algorithm without using case-based reasoning. In this paper, we analyze Go through combinatorial game theory and on the basis of probability matrix (PM) showing the difference of the territory of the black and the white. We design and implement a candidate generation system(CGS) to find the candidates at a situation in Go. CGS designed in this paper can compute Influence power, safety, probability value(PV), and PM and then generate candidate positions for a present scene, once a stone is played at a scene. The basic strategy generates five candidates for the Present scene, and then chooses one with the highest PV. CGS generates the candidate which emphasizes more defence tactics than attack ones. In the opening game of computer Go, we can know that CGS which has no pattern is somewhat superior to NEMESIS which has the Joseki pattern.

  • PDF

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

Multimedia Expert System for a Nuclear Power Plant Accident diagnosis using a Fuzzy Inference Method (퍼지 추론 방법을 이용한 원자력 사고진단 시스템을 위한 멀티미디어 전문가 시스템)

  • Lee, Sang-Beom;Lee, Seong-Ju;Lee, Mal-Rye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.1
    • /
    • pp.14-24
    • /
    • 2001
  • The huge and complicated plants such as nuclear power stations are likely to cause the operators to make mistakes due to a variety of inexplicable reasons and symptoms in case of emergency. Thats why the prevention system assisting the operators is being developed for. First of all. I suggest an improved fuzzy diagnosis. Secondly. I want to demonstrate that a classification system of nuclear plants accident investigating the causes of accidents foresees possible problems. and maintains the reliability of the diagnostic reports in spite of improper working in part. In the event of emergency in a nuclear plant, a lot of operational steps enable the operators to find out what caused the problems based on an emergent operating plan. Our system is able to classify their types within twenty to thirty seconds. As so, we expect the system to put don the accidents right after the rapid detection of the damage control-method concerned.

  • PDF

A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer (그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구)

  • Ji Hun Bae;Ju Hwan Lee;Gwang Hyun Yu;Gyeong Ju Kwon;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Recently, a convolutional neural network (CNN) based system is being developed to overcome the limitations of human resources in the apple quality classification of farmhouse. However, since convolutional neural networks receive only images of the same size, preprocessing such as sampling may be required, and in the case of oversampling, information loss of the original image such as image quality degradation and blurring occurs. In this paper, in order to minimize the above problem, to generate a image patch based graph of an original image and propose a random walk-based positional encoding method to apply the graph transformer model. The above method continuously learns the position embedding information of patches which don't have a positional information based on the random walk algorithm, and finds the optimal graph structure by aggregating useful node information through the self-attention technique of graph transformer model. Therefore, it is robust and shows good performance even in a new graph structure of random node order and an arbitrary graph structure according to the location of an object in an image. As a result, when experimented with 5 apple quality datasets, the learning accuracy was higher than other GNN models by a minimum of 1.3% to a maximum of 4.7%, and the number of parameters was 3.59M, which was about 15% less than the 23.52M of the ResNet18 model. Therefore, it shows fast reasoning speed according to the reduction of the amount of computation and proves the effect.

An Implementation of Lighting Control System using Interpretation of Context Conflict based on Priority (우선순위 기반의 상황충돌 해석 조명제어시스템 구현)

  • Seo, Won-Il;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.23-33
    • /
    • 2016
  • The current smart lighting is shaped to offer the lighting environment suitable for current context, after identifying user's action and location through a sensor. The sensor-based context awareness technology just considers a single user, and the studies to interpret many users' various context occurrences and conflicts lack. In existing studies, a fuzzy theory and algorithm including ReBa have been used as the methodology to solve context conflict. The fuzzy theory and algorithm including ReBa just avoid an opportunity of context conflict that may occur by providing services by each area, after the spaces where users are located are classified into many areas. Therefore, they actually cannot be regarded as customized service type that can offer personal preference-based context conflict. This paper proposes a priority-based LED lighting control system interpreting multiple context conflicts, which decides services, based on the granted priority according to context type, when service conflict is faced with, due to simultaneous occurrence of various contexts to many users. This study classifies the residential environment into such five areas as living room, 'bed room, study room, kitchen and bath room, and the contexts that may occur within each area are defined as 20 contexts such as exercising, doing makeup, reading, dining and entering, targeting several users. The proposed system defines various contexts of users using an ontology-based model and gives service of user oriented lighting environment through rule based on standard and context reasoning engine. To solve the issue of various context conflicts among users in the same space and at the same time point, the context in which user concentration is required is set in the highest priority. Also, visual comfort is offered as the best alternative priority in the case of the same priority. In this manner, they are utilized as the criteria for service selection upon conflict occurrence.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.