• Title/Summary/Keyword: Case based Reasoning

Search Result 449, Processing Time 0.027 seconds

Integrated Procedure of Self-Organizing Map Neural Network and Case-Based Reasoning for Multivariate Process Control (자기조직화 지도 신경망과 사례기반추론을 이용한 다변량 공정관리)

  • 강부식
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.53-69
    • /
    • 2003
  • Many process variables in modem manufacturing processes have influence on quality of products with complicated relationships. Therefore, it is necessary to control multiple quality variables in order to monitor abnormal signals in the processes. This study proposes an integrated procedure of self-organizing map (SOM) neural network and case-based reasoning (CBR) for multivariate process control. SOM generates patterns of quality variables. The patterns are compared with the reference patterns in order to decide whether their states are normal or abnormal using the goodness-of-fitness test. For validation, it generates artificial datasets consisting of six patterns, normal and abnormal patterns. Experimental results show that the abnormal patterns can be detected effectively. This study also shows that the CBR procedure enables to keep Type 2 error at very low level and reduce Type 1 error gradually, and then the proposed method can be a solution fur multivariate process control.

  • PDF

Development of a Book Recommender System for Internet Bookstore using Case-based Reasoning (사례기반 추론을 이용한 인터넷 서점의 서적 추천시스템 개발)

  • Lee, Jae-Sik;Myoung, Hun-Sik
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.4
    • /
    • pp.173-191
    • /
    • 2008
  • As volumes of electronic commerce increase rapidly, customers are faced with information overload, and it becomes difficult for them to find necessary information and select what they need. In this situation, recommender systems can help the customers search and select the products and services they need more conveniently. These days, the recommender systems play important roles in customer relationship management. In this research, we develop a recommender system that recommends the books to the customers of Internet bookstore. In previous researches on recommender systems, collaborative filtering technique has been often employed. For the collaborative filtering technique to be used, the rating scores on books given by previous purchasers have to be collected. However, the collection of rating scores is not an easy task in reality. Therefore, in this research, we employed case-based reasoning technique that can work only with the book purchase history of customers. The accuracy of recommendation of the resulting book recommender system was about 40% on the level 3 classification code.

  • PDF

Prediction of KOSPI using Data Editing Techniques and Case-based Reasoning (자료편집기법과 사례기반추론을 이용한 한국종합주가지수 예측)

  • Kim, Kyoung-Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.287-295
    • /
    • 2007
  • This paper proposes a novel data editing techniques with genetic algorithm (GA) in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in compelax problem solving. Nonetheless, compared to other machine teaming techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However. designing a good matching and retrieval mechanism for CBR system is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for data editing in CBR.

  • PDF

A Rule's Reasoning and Case-Based Learning Method for Efficient Dynamic Workload Balancing of VoD Systems (VoD 시스템의 효율적인 동적 작업부하조정을 위한 규칙 추론 및 사례기반 학습 방법)

  • Kim, Joong Hwan;Park, Jeong Yun
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.2
    • /
    • pp.107-117
    • /
    • 2008
  • The agent system that can adjust the workload dynamically through thc periodical monitoring of the VoD system comprises the agency part interfacing the VoD system and the intelligence part reasoning or learning the facts required for the adjustment of workload. This paper proposes a learning method that can apply to the intelligence part of the agent system. The proposed method can adjust the workload more efficiently by the rule's reasoning process and case-based learning process. An experiment of implementing a simulator was conducted to see whether or not application of the proposed method to VoD systems is efficient. As a result of the experiment, it was found that the throughput and the average waiting time of the VoD server were relatively improved when the proposed method was applied compared to existing means.

  • PDF

A Study on the Selection Model of Retaining Wall Methods Using Case-Based Reasoning (사례기반추론을 이용한 흙막이공법 선정모델에 관한 연구)

  • Kim Jae-Yeob;Park U-Yeol;Kim Gwang-Hee;Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.76-83
    • /
    • 2004
  • There is a greater importance for underground work designed and built in the urban areas when it comes to considering the cost-effectiveness and the period of construction commensurate with an increasing trend of skyscrapers. At this stage of underground work, it's extremely necessary to choose a proper earth retaining method. However, a frequent change order during construction happens in Korea where different performers design and construct separately, so there is a great possibility for the change order to affect the aspects of construction cost and period which normally define the outcome of construction work. Therefore, the study has suggested the rational retaining wall method by developing the case-based reasoning model as stool to choose a proper retaining wall method applied at the stage of selecting the earth retaining method. Applying the 'CBR Model' developed in the study to the designing and developing stages of the earth retaining work will contribute to the successful outcomes by decreasing any changes of design from implementing the earth retaining work.

Simultaneous Optimization Model of Case-Based Reasoning for Effective Customer Relationship Management (효과적인 고객관계관리를 위한 사례기반추론 동시 최적화 모형)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.175-195
    • /
    • 2005
  • 사례기반추론(case-based reasoning)은 사례간 유사도를 평가하여 유사한 이웃사례를 찾아내고, 이웃사례의 결과를 이용하여 새로운 사례에 대한 예측결과를 생성하는 전통적인 인공지능기법 중 하나다. 이러한 사례기반추론이 최근 적용이 쉽고 간단하다는 장점과 모형의 갱신이 실시간으로 이루어진다는 점 등으로 인해, 온라인 환경에서의 고객관계관리를 위한 도구로 학계와 실무에서 주목을 받고 있다 하지만, 전통적인 사례기반추론의 경우, 타 인공지능기법에 비해 정확도가 상대적으로 크게 떨어진다는 점이 종종 문제점으로 제기되어 왔다. 이에, 본 연구에서는 사례기반추론의 성과를 획기적으로 개선하기 위한 방법으로 유전자 알고리즘을 활용한 사례기반추론의 동시 최적화 모형을 제안하고자 한다. 본 연구가 제안하는 모형에서는 기존 연구에서 사례기반추론의 성과에 중대한 영향을 미치는 요소들로 제시된 바 있는 사례 특징변수의 상대적 가중치 선정(feature weighting)과 참조사례 선정(instance selection)을 유전자 알고리즘을 이용해 최적화함으로서, 사례간 유사도를 보다 정밀하게 도출하는 동시에 추론의 결과를 왜곡할 수 있는 오류사례의 영향을 최소화하고자 하였다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 국내 한 전문 인터넷 쇼핑몰의 구매예측모형 구축사례에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안모형이 지금까지 기존 연구에서 제안된 다른 사례기반추론 개선모형들은 물론, 로지스틱 회귀분석(LOGIT), 다중판별분석(MDA), 인공신경망(ANN), SVM 등 다른 인공지능 기법들에 비해서도 상대적으로 우수한 성과를 도출할 수 있음을 확인할 수 있었다.

  • PDF

An Automatic Learning of Adaptation Knowledge for Case-Based Reasoning (사례기반 추론을 위한 적응 지식의 자동 학습)

  • Lee, Jae-Pil;Jo, Gyeong-Dal;Kim, Gi-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.96-106
    • /
    • 1999
  • Case-Base Reasoning(CBR) solves the new problems by reusing the solutions to previously solved problems. But, there are differences between previously known case and a new problems. To solve this problem Case-Based System have to adapt the solution of the case to suit a new situation. In current CBR systems, case adaptation is usually performed by rule-based method that use rules hand-coded by the system developer. So, CBR system designer faces knowledge acquisition bottleneck akin to those found in traditional expert system design. To solve this problem, in this thesis, we present an automatic learning method of case adaptation knowledge using case base, we use a method of comparing cases in the case base to learn adaptation knowledge. The system is tested in the domain for the decision of travel-price. The result shows accuracy improvement in comparison with case retrieval-only system.

  • PDF

An Ontological and Rule-based Reasoning for Music Recommendation using Musical Moods (음악 무드를 이용한 온톨로지 기반 음악 추천)

  • Song, Se-Heon;Rho, Seung-Min;Hwang, Een-Jun;Kim, Min-Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.108-118
    • /
    • 2010
  • In this paper, we propose Context-based Music Recommendation (COMUS) ontology for modeling user's musical preferences and context and for supporting reasoning about the user's desired emotion and preferences. The COMUS provides an upper Music Ontology that captures concepts about the general properties of music such as title, artists and genre and also provides extensibility for adding domain-specific ontologies, such as Mood and Situation, in a hierarchical manner. The COMUS is music dedicated ontology in OWL constructed by incorporating domain specific classes for music recommendation into the Music Ontology. Using this context ontology, we believe that the use of logical reasoning by checking the consistency of context information, and reasoning over the high-level, implicit context from the low-level, explicit information. As a novelty, our ontology can express detailed and complicated relations among the music, moods and situations, enabling users to find appropriate music for the application. We present some of the experiments we performed as a case-study for music recommendation.

Cost Estimation of Case-Based Reasoning Using Hybrid Genetic Algorithm - Focusing on Local Search Method Using Correlation Analysis - (혼합형 유전자 알고리즘을 적용한 사례기반추론 공사비예측 - 상관분석을 이용한 지역탐색 기법을 중심으로 -)

  • Jung, Sangsun;Park, Moonseo;Lee, Hyun-Soo;Yoon, Inseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.1
    • /
    • pp.50-60
    • /
    • 2020
  • Estimates of project costs in the early stages of a construction project have a significant impact on the operator's decision-making in important matters, such as the site's decision or the construction period. However, it is difficult to carry out the initial stage with confidence because information such as design books and specifications is not available. In previous studies, case-based reasoning was used to predict initial construction costs, and genetic algorithms were used to calculate the weight of the inquiry phase among them. However, some say that it is difficult to perform better than the current year because existing genetic algorithms are calculated in random numbers. To overcome these limitations, correlation numbers using correlation analysis rather than random numbers are reflected in the genetic algorithm by method of local search, and weights are calculated using a hybrid genetic algorithm that combines local search and genetic algorithms. A case-based reasoning model was developed using the weights calculated and validated with the data. As a result, it was found that the hybrid GA-CBR applied with local search performed better than the existing GA-CBR.

Applying CBR for Default Risk Forecasting (채무불이행위험의 예측을 위한 CBR응용)

  • Kim Jin-Baek
    • Management & Information Systems Review
    • /
    • v.3
    • /
    • pp.179-199
    • /
    • 1999
  • Case-Based Reasoning(CBR) offers a new approach for developing knowledge based systems. In case-based approach the problem solving experience of the domain expert is encoded in the form of cases. CBR has successfully been applied to many kinds of problems such as design, planning, diagnosis and forecasting. In this paper, CBR was applied for forecasting default risk. The applied result was successful in spite of the small casebase. Generally, CBR requires large casebase. So, if the number of data was large, the result was better. But in this paper, what financial variable was more forecastable was not tested. Next, this should be tested.

  • PDF