• Title/Summary/Keyword: Cascading

Search Result 169, Processing Time 0.029 seconds

A Study on the Pulse Peak Voltage and Cascading Ratio of Compact Pulse Generator using Cascading Method (Cascading 방식을 적용한 펄스발생기의 펄스전압 변성 및 Cascading 비율 특성)

  • Joung, Jong-Han;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.329-333
    • /
    • 2001
  • The pulsed poser system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNox/DeSOx power system, ozon generator, etc. A pulse energy efficiency for load depends on the rising time, peak value, pulse duration and impedance matching, etc. The pulse generator generally required for short pusle duration and high peak value was forced to consider its volume and economy. In this study, developing a compact pulse generator that applied for cascading method to be made of two pulse transformers, we compared cascading voltage with non cascading one by applying the pulse energy to load. Adopting cascading technique to pulse transformer, we found that average cascading voltage was about 60[%] of theoretical value. Maximum cascading ratio was calculated at 60 times compared with non cascading voltage.

  • PDF

Development of Visualization Model for Probabilistic Analysis of Cascading Failure Risks (확률론적 연쇄사고 분석을 위한 시각화 모형 개발)

  • Choy, Youngdo;Baek, Ja-hyun;Kim, Taekyun;Jeon, Dong-hoon;Yoon, Gi-gab;Park, Sang-Ho;Goo, Bokyung;Hur, Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2018
  • According to the recent blackouts, large blackouts can be described by cascading outages. Cascading outage is defined by sequential outages from an initial disturbance. Sequential and probabilistic approach are necessary to minimize the blackout damage caused by cascading outages. In addition, conventional cascading outage analysis models are computationally complex and have time constraints, it is necessary to develop the new analytical techniques. In this paper, we propose the advance visualization model for probabilistic analysis of cascading failure risks. We introduce the visualization model for identifying size of cascading and potential outages and estimate the propagation rate of sequential outage simulation. The proposed model is applied to Korean power systems.

A Study on the ripple cancellation using two cascading Chebyshev filters (Cascading Chebyshev filter를 이용한 리플 제거에 관한 연구)

  • Shin, Seung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1700-1705
    • /
    • 2012
  • This study is focusing on ripple elimination in the band pass filter. There are generally two design methods in IIR filter design, which are a direct method and an indirect one. The indirect design method that designs the digital IIR LPF using the prototype analog LPF is applied to this study. A Butterworth filter and a Chebyshev filter are the typical prototype analog LPFs. This study shows characteristics of the digital IIR LPFs that are transformed from the prototype analog LPFs. The designed Butterworth and Chebyshev IIR LPFs are also designed as the band pass filters by frequency transformation in order to compare with the proposed cascading Chebyshev BPFs. This study shows frequency characteristics between the transformed IIR BPFs and the proposed cascading Chebyshev BPFs as well. The proposed cascading Chebyshev BPF is designed by cascading the different orders of Chebyshev BPFs. The aspect of the cascading filter is offsetting the ripples to descend them while the pass band ripples of the Chebyshev filter are ascending and vice versa. The designed cascading Chebyshev filter shows the flatness and the sharpness, which represent the advantages of Butterworth filter in the pass band and of Chebyshev filter in the transition band respectively. This result verifies the validity of the designed filter.

A Study on the Performance of the Stable Cascading BPF (안정한 종속 BPF의 성능에 관한 연구)

  • Kim, Jung-Hwan;Shin, Seung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1758-1763
    • /
    • 2013
  • This paper is a study on the performance of the stable cascading BPF. There are generally two methods of designing IIR filter, which are a direct method and an indirect one. The indirect design method that is transformed into the BPF by frequency transformation using the prototype analog LPF which is satisfied for designing specifications is applied to this study. As typical prototype analog LPFs, there are the Butterworth filter, the Chebyshev filter and the elliptic filter. In this study, we connect the frequency transformed BPFs (to the cascade form) which have been converted from the stable Butterworth filter and Chebyshev filter. Three classified simulations are conducted in this study, which are the cascading Butterworth BPF Only, the cascading Chebyshev BPF Only and the cascading Butterworth and Chebyshev BPFs. As a result of the simulation, this study shows that a ripple size of the cascading Chebyshev BPF Only is about 1[dB] smaller than that of the cascading Butterworth and Chebyshev BPFs and also the skirt characteristic of the cascading Chebyshev BPF in the transition band is most outstanding and has the widest bandwidth. The result of performance comparison shows the validity of specifications required in the workplace.

A Comparison of the Cascading Chebyshev BPF's skirt Characteristic and the Same Order BPF's (종속 Chebyshev BPF와 동일 차수 BPF의 skirt 특성 비교)

  • Shin, Seung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.598-604
    • /
    • 2015
  • A Chebyshev filter is well known for having a sharp skirt characteristic and equi-ripple. On the other hand, a Butterworth filter has a smooth skirt characteristic and maximally flat ripple. This paper analyzes the skirt characteristics of the filters with the cascade connection. The paper deals with the Chebyshev BPF, Cascading Chebyshev BPF, Butterworth BPF, Cascading Butterworth*Chebyshev BPF. First of all, the paper designs the prototype analog LPF in order to analyze skirt characteristics of the BPFs. Then the paper does the frequency transformation into the BPFs and tests the BPFs with cascading them. As a result, the skirt characteristics of the Chebyshev BPF was the sharpest and those of the Cascading Chebyshev BPF, Butterworth BPF, Cascading Butterworth*Chebyshev BPF was superior in order. The validity of the paper was confirmed through minute measurements of test results.

Reliability Analysis of Power System with Dependent Failure (종속고장을 고려한 전력시스템의 신뢰도 평가)

  • Son, Hyun-Il;Kwon, Ki-Ryang;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.62-68
    • /
    • 2011
  • Power system needs to sustain high reliability due to its complexity and security. The reliability prediction method is usually based on independent failure. However, in practice, the Common Cause Failures(CCF) and Cascading failure occur to the facilities in power system as well as independent failures in many cases. The CCF and Cascading failure turn out the system collapse seriously in a wide range. Therefore to improve the reliability of the power system practically, it is required that the analysis is conducted by using the CCF and Cascading failure. This paper describes the CCF and Cascading failure modeling combined with independent failure. The incorporated model of independent failure, CCF and cascading failure is proposed and analyzed, and it is applied to the distribution power system in order to examine this method.

The Study on the Electrical Characteristics of the Pulse Generator adopted Cascading Technique

  • Joung, Jong-Han;Kim, Moon-Hwan
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.112-116
    • /
    • 2004
  • The pulsed power systems have been widely used many other countries and their new applications have been developed by many researchers, such as E/P(Electrostatic Precipitator) to remove the industrial dust, DeNOx/DeSOx power systems, ozone generators and power sources of the laser beam, etc. In this paper, we studied the cascading technique as a new technology consisted of two pulse transformers and obtained their experimental data and results. To obtain the high pulsed voltage adopted cascading technique, we designed our compact pulse generator and tested by adjusting the value of the load resistors to obtain high pulsed voltage with steep rising time and duration time. We explained their experimental results that obtained by adopting cascading technique. Also, we compared theoretical value with measured value obtained by using the cascading method.

Preventing cascading failure of electric power protection systems in nuclear power plant

  • Moustafa, Moustafa Abdelrahman Mohamed Mohamed;Chang, Choong-koo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.121-130
    • /
    • 2021
  • Cascading failure is the main cause of large blackouts in electrical power systems; this paper analyzes a cascading failure in Hanbit nuclear power plant unit two (2) caused by a circuit breaker (CB) operation failure. This malfunction has been expanded to the loss of offsite power (LOOP). In this study, current practices are reviewed and then the methodologies of how to prevent cascading failures in protection power systems are introduced. An overview on the implementation of IEC61850 GOOSE messaging-based zone selective interlocking (ZSI) scheme as key solution is proposed. In consideration of ZSI blocking time, all influencing factors such as circuit breaker opening time, relay I/O response time and messages travelling time in the communication network should be taken into account. The purpose of this paper is to elaborate on the effect of cascading failure in NPP electrical power protection system and propose preventive actions for this failures. Finally, the expected advantages and challenges are elaborated.

The New Type Pulse Generator Adopted Cascading Technique (소형트랜스의 Cascading 방식을 적용한 임펄스 출력특성)

  • Kyung-Ae Shin;Whi-Young kim;Myeong-Soon Kim
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.363-368
    • /
    • 2001
  • This paper introduced cascading technique as a new technology composed of two pulse transformers and presented the experimental data and results. To obtain the stable pulse voltage adopted cascading technique, we designed and tested a compact pulse generator by adjusting the load resistors and input voltage. Adopting cascading technique to load, we found that average cascading voltage was about 62$\%$ of theoretical value. Cascading ratio was calculated at almost 19 compared with non cascading voltage.

  • PDF

The Impulse Output Characteristics using Cascading Method of Compact Transformer (소형트랜스의 Cascading 방식을 적용한 임펄스 출력특성)

  • Joung, Jong-Han;Kim, Whi-Young;Hong, Jung-Hwan;Park, Koo-Ryul;Kim, Hee-Je;Cho, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1865-1867
    • /
    • 2000
  • The pulse power system has been widely used to many applications. such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power system, ozon generator. etc. A pulse energy efficiency for load depend on the rising time, peak value, pulse duration, impedance matching. etc. The pulse generator generally required for short pulse duration, high peak value was forced to consider its size and economy. In this study, developing a compact pulse generator that applied for Cascading method to be made of two pulse transformer, we compared cascading voltage with no cascading one by applying the pulse energy to load.

  • PDF