• 제목/요약/키워드: Cascades

검색결과 287건 처리시간 0.023초

Analysis of Aerodynamic Performance in an Annular Compressor Bowed Cascade with Large Camber Angles

  • Chen, Shaowen;Chen, Fu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.13-20
    • /
    • 2009
  • The effects of positively bowed blade on the aerodynamic performance of annular compressor cascades with large camber angle were experimentally investigated under different incidences. The distributions of the exit total pressure loss and secondary flow vectors of compressor cascades were analyzed. The static pressure was measured by tapping on the cascade surfaces, and the ink-trace flow visualizations were conducted. The results show that the value of the optimum bowed angle and optimum bowed height decrease because of the increased losses at the mid-span with the increase of the caber angle. The C-shape static pressure distribution along the radial direction exists on the suction surface of the straight cascade with large r camber angles. When bowed blade is applied, the larger bowed angle and larger bowed height will further enhance the accumulation of the low-energy fluid at the mid-span, thus deteriorate the flow behavior. Under $60^{\circ}$ camber angle, flow behavior near the end-wall region of some bowed cascades even deteriorates instead of improving because the blockage of the separated flow near the mid-span keeps the low-energy fluid near the end-walls from moving towards the mid-span region, and as a result, a rapid augmentation of the total loss is easy to take place under large bowed angle. With the increase of camber angle, the choice range of bowed angle corresponding to the best performance in different incidences become narrower.

A Design Method for Cascades Consisting of Circular Arc Blades with Constant Thickness

  • Bian, Tao;Han, Qianpeng;Bohle, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.63-75
    • /
    • 2017
  • Many axial fans have circular arc blades with constant thickness. It is still a challenging task to calculate their performance, i.e. to predict how large their pressure rise and pressure losses are. For this task a need for cascade data exists. Therefore, the designer needs a method which works quickly for design purposes. In the present contribution a design method for such cascades consisting of circular arc blades with constant thickness is described. It is based on a singularity method which is combined with a CFD-data-based flow loss model. The flow loss model uses CFD-data to predict the total pressure losses. An interpolation method for the CFD-data are applied and described in detail. Data of measurements are used to validate the CFD-data and parameter variations are conducted. The parameter variations include the variation of the camber angle, pitch chord ratio and the Reynolds number. Additionally, flow patterns of two dimensional cascades consisting of circular arc blades with constant thickness are shown.

Efficiency criteria for optimization of separation cascades for uranium enrichment

  • Sulaberidze, Georgy;Zeng, Shi;Smirnov, Andrey;Bonarev, Anton;Borisevich, Valentin;Jiang, Dongjun
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.126-131
    • /
    • 2018
  • As it is known, uranium enrichment is carried out on industrial scale by means of multistage separation facilities, i.e., separation cascades in which gas centrifuges (GCs) are connected in series and parallel. Design and construction of these facilities require significant investment. So, the problem of calculation and optimization of cascade working parameters is still relevant today. At the same time, in many cases, the minimum unit cost of a product is related to the cascade having the smallest possible number of separation elements/GCs. Also, in theoretical studies, it is often acceptable to apply as an efficiency criterion the minimum total flow to supply cascade stages instead of the abovementioned minimum unit cost or the number of separation elements. In this article, cascades with working parameter of a single GC changing from stage to stage are optimized by two of the abovementioned performance criteria and are compared. The results obtained allow us to make a conclusion about their differences.

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

Molybdenum isotopes separation using squared-off optimized cascades

  • Mahdi Aghaie;Valiyollah Ghazanfari
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3291-3300
    • /
    • 2023
  • Recently molybdenum alloys have been introduced as accident tolerating materials for cladding of fuel rods. Molybdenum element has seven stable isotopes with different neutron absorption cross section used in various fields, including nuclear physics and radioisotope production. This study presents separation approaches for all intermediate isotopes of molybdenum element by squared-off cascades using a newly developed numerical code with Salp Swarm Algorithm (SSA) optimization algorithm. The parameters of cascade including feed flow rate, feed entry stage, cascade cut, input feed flow rate to gas centrifuges (GCs), and cut of the first stage are optimized to maximize both isotope recovery and cascade capacity. The squared off and squared cascades are studied, and the efficiencies are compared. The results obtained from the optimization showed that for the selected squared off cascade, Mo94 in four separation steps, Mo95 in five steps, Mo96 in six steps, Mo97 in seven steps, and Mo98 in two steps are separated to the desired concentrations. The highest recovery factor is obtained 63% for Mo94 separation and lowest recovery factor is found 45% for Mo95.

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani;Mahdi Aghaie
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1225-1232
    • /
    • 2023
  • The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.

Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms

  • Kang, Sangmin;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1727-1735
    • /
    • 2017
  • Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.