• 제목/요약/키워드: Cascaded multilevel converter

검색결과 44건 처리시간 0.025초

A Novel Modulation Scheme and a DC-Link Voltage Balancing Control Strategy for T-Type H-Bridge Cascaded Multilevel Converters

  • Wang, Yue;Hu, Yaowei;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2099-2108
    • /
    • 2016
  • The cascaded multilevel converter is widely adopted to medium/high voltage and high power electronic applications due to the small harmonic components of the output voltage and the facilitation of modularity. In this paper, the operation principle of a T-type H-bridge topology is investigated in detail, and a carrier phase shifted pulse width modulation (CPS-PWM) based control method is proposed for this topology. Taking a virtual five-level waveform achieved by a unipolar double frequency CPS-PWM as the output object, PWM signals of the T-type H-bridge can be obtained by reverse derivation according to its switching modes. In addition, a control method for the T-type H-bridge based cascaded multilevel converter is introduced. Then a single-phase T-type H-bridge cascaded multilevel static var generator (SVG) prototype is built, and a repetitive controller based compound current control strategy is designed with the DC-link voltage balancing control scheme analyzed. Finally, simulation and experimental results validate the correctness and feasibility of the proposed modulation method and control strategy for T-type H-bridge based cascaded multilevel converters.

Unification of Buck-boost and Flyback Converter for Driving Cascaded H-bridge Multilevel Inverter with Single Independent DC Voltage Source

  • Kim, Seong-Hye;Kim, Han-Tae;Park, Jin-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.190-196
    • /
    • 2013
  • It presents a unification of buck-boost and flyback converter for driving a cascaded H-bridge multilevel inverter with a single independent DC voltage source. Cascaded H-bridge multilevel inverter is useful to make many output voltage levels for sinusoidal waveform by combining two or more H-bridge modules. However, each H-bridge module needs an independent DC voltage source to generate multi levels in an output voltage. This topological characteristic brings a demerit of increasing the number of independent DC voltage sources when it needs to increase the number of output voltage levels. To solve this problem, we propose a converter combining a buck-boost converter with a flyback converter. The proposed converter provides independent DC voltage sources at back-end two H-bridge modules. After analyzing theoretical operation of the circuit topology, the validity of the proposed approach is verified by computer-aided simulations using PSIM and experiments.

Cascaded H-bridge Multilevel Inverter employing Front-end Flyback Converter with Single Independent DC Voltage Source

  • Kim, Ki-Du;Bae, Gyou-Tak;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.197-201
    • /
    • 2013
  • Cascaded H-bridge multilevel inverter requires independent DC voltage sources to produce multi output voltage levels. When it needs to generate more levels in the output voltage wave, the number of independent DC voltage sources usually limits its extension. To solve this problem, we propose a cascaded H-bridge multilevel inverter employing a front-end flyback converter for unifying input DC voltage sources. After theoretical analysis of the proposed circuit, we verify the validity of the proposed inverter using computer-aided simulations and experiments.

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

A New Family of Cascaded Transformer Six Switches Sub-Multilevel Inverter with Several Advantages

  • Banaei, M.R.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1078-1085
    • /
    • 2013
  • This paper presents a novel topology for cascaded transformer sub-multilevel converter. Eachsub-multilevel converter consists of two DC voltage sources with six switches to achieve five-level voltage. The proposed topology results in reduction of DC voltage sources and switches number. Single phase low frequency transformers are used in proposed topology and voltage transformation and galvanic isolation between load and sources are given by transformers. This topology can operate as symmetric or asymmetric converter but in this paper we have focused on symmetric state. The operation and performance of the suggested multilevel converter has been verified by the simulation results of a single-phase nine-level multilevel converter using MATLAB/SIMULINK.

Optimal Topologies for Cascaded Sub-Multilevel Converters

  • Babaei, Ebrahim
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.251-261
    • /
    • 2010
  • The general function of a multilevel converter is to synthesize a desired output voltage from several levels of dc voltages as inputs. In order to increase the steps in the output voltage, a new topology is recommended in [1], which benefits from a series connection of sub-multilevel converters. In the procedure described in this reference, despite all the advantages, it is not possible to produce all the steps (odd and even) in the output. In addition, for producing an output voltage with a constant number of steps, there are different configurations with a different number of components. In this paper, the optimal structures for this topology are investigated for various objectives such as minimum number of switches and dc voltage sources and minimum standing voltage on the switches for producing the maximum output voltage steps. Two new algorithms for determining the dc voltage sources magnitudes have been proposed. Finally, in order to verify the theoretical issues, simulation and experimental results for a 49-level converter with a maximum output voltage of 200V are presented.

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

A Flyback-Assisted Single-Sourced Photovoltaic Power Conditioning System Using an Asymmetric Cascaded Multilevel Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2272-2283
    • /
    • 2016
  • This paper proposes a power conditioning system (PCS) for distributed photovoltaic (PV) applications using an asymmetric cascaded multilevel inverter with a single PV source. One of the main disadvantages of the cascaded multilevel inverters in PV systems is the requirement of multiple isolated DC sources. Using multiple PV strings leads to a compromise in either the voltage balance of individual H-bridge cells or the maximum power point tracking (MPPT) operation due to localized variations in atmospheric conditions. The proposed PCS uses a single PV source with a flyback DC-DC converter to facilitate a reduction of the required DC sources and to maintain the voltage balance during MPPT operation. The flyback converter is used to provide input for low-voltage H-bridge cells which processes only 20% of the total power. This helps to minimize the losses occurring in the proposed PCS. Furthermore, transient analyses and controller design for the proposed PCS in both the stand-alone mode and the grid-connection mode are presented. The feasibility of the proposed PCS and its control scheme have been tested using a 1kW hardware prototype and the obtained results are presented.

Cascaded Boost Multilevel Converter for Distributed Generation Systems

  • Kim, Ki-Mok;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.70-71
    • /
    • 2017
  • This paper presents a new cascaded boost multilevel converter topology for distributed generation (DG) systems. Most of DG systems, such as photovoltaic (PV), wind turbine and fuel cells, normally require the complex structure power converters, which makes the system expensive, complex and hard to control. However, the proposed converter topology can generate a much higher output voltage just by using the standard low-voltage switch devices and low voltage DC-sources in a simplified structure, also enhancing the reliability of the switch devices. Simulation and experimental results with a 1.2kW system are presented to validate the proposed topology and control method.

  • PDF

불평형 부하를 가지는 Cascaded H-bridge Multilevel STATCOM에서 전압불평형 보상기의 설계 (Design of Voltage Unbalance Compensator in Cascaded H-bridge Multilevel STATCOM with Unbalanced Load)

  • 김태형;권병기;정승기
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.128-129
    • /
    • 2013
  • 본 논문에서는 전기로 부하에서 발생하는 무효전력 성분과 역상분 전류를 보상하기 위한 STATCOM(STATic synchronous COMpensator)을 Cascaded Multilevel Converter(CMC)로 구성하는 경우 역상분 전류 보상시에 발생하는 직류전압의 불평형을 보상하기 위한 방법을 제안하고, 이를 시뮬레이터를 통해 검증하였다.

  • PDF