• Title/Summary/Keyword: Cascaded multilevel

Search Result 134, Processing Time 0.021 seconds

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

A Novel Modulation Strategy Based on Level-Shifted PWM for Fault Tolerant Control of Cascaded Multilevel Inverters (Cascaded 멀티레벨 인버터의 고장 허용 제어를 위한 Level-Shifted PWM 기반의 새로운 변조 기법)

  • Kim, Seok-Min;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.718-725
    • /
    • 2015
  • This paper proposes a novel level-shifted PWM (LS-PWM) strategy for fault tolerant cascaded multilevel inverter. Most proposed fault-tolerant operation methods in many of studies are based on a phase-shifted PWM (PS-PWM) method. To apply these methods to multilevel inverter systems using LS-PWM, two additional steps will be implemented. During the occurrence of a single-inverter-cell fault, the carrier bands scheme is reconfigured and modulation levels of inverter cells are reassigned in this proposed fault-tolerant operation. The proposed strategy performs balanced three-phase line-to-line voltages and line currents when a switching device fault occurs in a cascaded multilevel inverter using LS-PWM. Simulation and experimental results are included in the paper to verify the proposed method.

A New Design for Cascaded Multilevel Inverters with Reduced Part Counts

  • Choupan, Reza;Nazarpour, Daryoush;Golshannavaz, Sajjad
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.229-236
    • /
    • 2017
  • This paper deals with the design and implementation of an efficient topology for cascaded multilevel inverters with reduced part counts. In the proposed design, a well-established basic unit is first developed. The series extension of this unit results in the formation of the proposed multilevel inverter. The proposed design minimizes the number of power electronic components including insulated-gate bipolar transistors and gate driver circuits, which in turn cuts down the size of the inverter assembly and reduces the operating power losses. An explicit control strategy with enhanced device efficiency is also acquired. Thus, the part count reductions enhance not only the economical merits but also the technical features of the entire system. In order to accomplish the desired operational aspects, three algorithms are considered to determine the magnitudes of the dc voltage sources effectively. The proposed topology is compared with the conventional cascaded H-bridge multilevel inverter topology, to reflect the merits of the presented structure. In continue, both the analytical and experimental results of a cascaded 31-level structure are analyzed. The obtained results are discussed in depth, and the exemplary performance of the proposed structure is corroborated.

Fast FCS-MPC-Based SVPWM Method to Reduce Switching States of Multilevel Cascaded H-Bridge STATCOMs

  • Wang, Xiuqin;Zhao, Jiwen;Wang, Qunjing;Li, Guoli;Zhang, Maosong
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.244-253
    • /
    • 2019
  • Finite control set model-predictive control (FCS-MPC) has received increasing attentions due to its outstanding dynamic performance. It is being widely used in power converters and multilevel inverters. However, FCS-MPC requires a lot of calculations, especially for multilevel-cascaded H-bridge (CHB) static synchronous compensators (STATCOMs), since it has to take account of all the feasible voltage vectors of inverters. Hence, an improved five-segment space vector pulse width modulation (SVPWM) method based on the non-orthogonal static reference frames is proposed. The proposed SVPWM method has a lower number of switching states and requires fewer computations than the conventional method. As a result, it makes FCS-MPC more efficient for multilevel cascaded H-bridge STATCOMs. The partial cost function is adopted to sequentially solve for the reference current and capacitor voltage. The proposed FCS-MPC method can reduce the calculation burden of the FCS-MPC strategy, and reduce both the switching frequency and power losses. Simulation and experimental results validate the excellent performance of the proposed method when compared with the conventional approach.

Improvement of the Performance of the Cascaded Multilevel Inverters Using Power Cells with Two Series Legs

  • Babaei, Ebrahim;Dehqan, Ali;Sabahi, Mehran
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.223-231
    • /
    • 2013
  • A modular three-phase multilevel inverter especially suitable for electrical drive applications has been previously presented. This topology is based on series connection of power cells in which each cell comprised of two inverter legs in series. In this paper, in order to generate the maximum number of voltage levels with reduced number of switches, three algorithms are proposed for determination of the magnitudes of dc voltage sources. In addition, a new hybrid multilevel inverter is proposed that is composed of series connection of the previously presented multilevel inverter and some H-bridges. The proposed topology has been compared with some other presented multilevel inverters. The performance of the proposed multilevel inverter has been verified by simulation and experimental results of a single-phase 39-level multilevel inverter.

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

A Flyback-Assisted Single-Sourced Photovoltaic Power Conditioning System Using an Asymmetric Cascaded Multilevel Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2272-2283
    • /
    • 2016
  • This paper proposes a power conditioning system (PCS) for distributed photovoltaic (PV) applications using an asymmetric cascaded multilevel inverter with a single PV source. One of the main disadvantages of the cascaded multilevel inverters in PV systems is the requirement of multiple isolated DC sources. Using multiple PV strings leads to a compromise in either the voltage balance of individual H-bridge cells or the maximum power point tracking (MPPT) operation due to localized variations in atmospheric conditions. The proposed PCS uses a single PV source with a flyback DC-DC converter to facilitate a reduction of the required DC sources and to maintain the voltage balance during MPPT operation. The flyback converter is used to provide input for low-voltage H-bridge cells which processes only 20% of the total power. This helps to minimize the losses occurring in the proposed PCS. Furthermore, transient analyses and controller design for the proposed PCS in both the stand-alone mode and the grid-connection mode are presented. The feasibility of the proposed PCS and its control scheme have been tested using a 1kW hardware prototype and the obtained results are presented.

A New Family of Cascaded Transformer Six Switches Sub-Multilevel Inverter with Several Advantages

  • Banaei, M.R.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1078-1085
    • /
    • 2013
  • This paper presents a novel topology for cascaded transformer sub-multilevel converter. Eachsub-multilevel converter consists of two DC voltage sources with six switches to achieve five-level voltage. The proposed topology results in reduction of DC voltage sources and switches number. Single phase low frequency transformers are used in proposed topology and voltage transformation and galvanic isolation between load and sources are given by transformers. This topology can operate as symmetric or asymmetric converter but in this paper we have focused on symmetric state. The operation and performance of the suggested multilevel converter has been verified by the simulation results of a single-phase nine-level multilevel converter using MATLAB/SIMULINK.

Optimal Topologies for Cascaded Sub-Multilevel Converters

  • Babaei, Ebrahim
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.251-261
    • /
    • 2010
  • The general function of a multilevel converter is to synthesize a desired output voltage from several levels of dc voltages as inputs. In order to increase the steps in the output voltage, a new topology is recommended in [1], which benefits from a series connection of sub-multilevel converters. In the procedure described in this reference, despite all the advantages, it is not possible to produce all the steps (odd and even) in the output. In addition, for producing an output voltage with a constant number of steps, there are different configurations with a different number of components. In this paper, the optimal structures for this topology are investigated for various objectives such as minimum number of switches and dc voltage sources and minimum standing voltage on the switches for producing the maximum output voltage steps. Two new algorithms for determining the dc voltage sources magnitudes have been proposed. Finally, in order to verify the theoretical issues, simulation and experimental results for a 49-level converter with a maximum output voltage of 200V are presented.

An Improved SPWM Strategy to Reduce Switching in Cascaded Multilevel Inverters

  • Dong, Xiucheng;Yu, Xiaomei;Yuan, Zhiwen;Xia, Yankun;Li, Yu
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.490-497
    • /
    • 2016
  • The analysis of the switch status of each unit module of a cascaded multi-level inverter reveals that the working condition of the switch of a chopper arm causes unnecessary switching under the conventional unipolar sinusoidal pulse width modulation (SPWM). With an increase in the number of cascaded multilevel inverters, the superposition of unnecessary switching gradually occurs. In this work, we propose an improved SPWM strategy to reduce switching in cascaded multilevel inverters. Specifically, we analyze the switch state of the switch tube of a chopper arm of an H-bridge unit. The redundant switch is then removed, thereby reducing the switching frequency. Unlike the conventional unipolar SPWM technique, the improved SPWM method greatly reduces switching without altering the output quality of inverters. The conventional unipolar SPWM technique and the proposed method are applied to a five-level inverter. Simulation results show the superiority of the proposed strategy. Finally, a prototype is built in the laboratory. Experimental results verify the correctness of the proposed modulation strategy.